
Exam June 2, 2015 in SF2852 Optimal Control.

Examiner: Johan Karlsson, tel. 790 84 40.

Allowed books: The formula sheet and β mathematics handbook.

Solution methods: All conclusions should be properly motivated.

Note! Your personal number must be stated on the cover sheet. Number
your pages and write your name on each sheet that you turn in!

Preliminary grades (Credit = exam credit + bonus from homeworks):
23-24 credits give grade Fx (contact examiner asap for further info), 25-27
credits give grade E, 28-32 credits give grade D, 33-38 credits give grade C,
39-44 credits give grade B, and 45 or more credits give grade A.

1. Solve the problem

min

∫ 1

0
x(t)u(t)dt subject to


ẋ =

(
1
2 − u

)
x,

x(0) = 1, x(1) = 1,

|u(t)| ≤ 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10p)

Hint: Assume that x > 0.

2. Determine the optimal stabilizing state feedback control corresponding
to the following optimal control problem (cost is not needed explicitly)

min

∫ ∞
0

1

2
(x2 + u2)dt subj. to ẋ = x+ x2 + u, x(0) = x0.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10p)

3. Consider the following discrete problem:

min
∞∑
k=0

(
x2k + 2u2k

)
subject to

{
xk+1 = xk + uk

x0 = xi given.

(a) Determine the optimal feedback and cost when x ∈ R.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

(b) Determine the feasible control set that restricts the state x to the
intervals [−∞, 3] ∪ [4, 12]. Determine the optimal feedback and
cost for this problem.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)
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4. Background: In speech processing, a sound wave is modeled as a sta-
tionary stochastic process over a time frame of 30 ms. It is common to
represent such a time frame by its first n cepstral coefficients (a vector
in Rn). In this way distances between speech frames are defined as
the Euclidean distance between the first n cepstral coefficients.

One tool for model matching is Dynamic Time Warping (DTW). Con-
sider two sequences {xt}Nt=0, {yt}Mt=0, such that M < N,xt, yt ∈ Rn. To
determine how “close” the sequences are one can introduce the time
scaling τ which is an function {0, . . . , N} → {0, . . . ,M} and compute

min
N∑
t=0

‖xt − yτ(t)‖

subject to τ(t) ≤ τ(t+ 1) ≤ τ(t) + 1, τ(1) = 1, τ(N) = M.

The idea is thus to repeat some elements yt to get a good fit between
these two sequences. The time scaling of the sequence yt makes the
data less sensitive to the speed with which the sentences have been
pronounced.

(a) Formulate this minimization as a multistage decision problem
(discrete dynamic programming problem).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)

(b) State the dynamic programming recursion formulas and bound-
ary conditions.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

5. Consider the following optimal control problem

maxx1(T ) subj. to


ẋ1 = x2 + u, x1(0) = 0

ẋ2 = −x1, x2(0) = 0∫ T
0 u2(t)dt = c

(a) Reformulate the optimal control problem as a problem on state
space form.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

(b) Solve the optimal control problem. . . . . . . . . . . . . . . . . . . . . . . . . (6p)

(c) What happens when T →∞. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)
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Solutions

1. The Hamiltonian function is

H(x, u, λ) = ux+ λ(1/2− u)x

Pointwise maximization gives (here we assume x > 0)

arg minH(x, u, λ) = arg min(1− λ)ux =

{
1, λ > 1

−1, λ < 1

In order to determine the number of switches we first determine the
adjoint equation

λ̇ = − ∂

∂x
H(x, u, λ) = −u− λ(1/2− u) = −λ/2 + (λ− 1)u

Consider the switching function σ = λ− 1. We have

σ̇ = λ̇ = −λ/2 + (λ− 1)u

which gives
σ̇|σ=0 = −1/2

Hence, σ(t) = 0 gives σ̇(t) < 0, which means that we at most can have
one switch. The possible optimal control sequences are {−1}, {1}, {1,−1}.
The first two must be excluded since they imply that x(1) < 1 and
x(1) > 2, respectively. We must have u∗ ≡ 1 on [0, τ ] and u∗ ≡ −1
on [τ, T ]. We need to determine the switching time τ . To do this we
integrate the system equation

x(τ) = e−
1
2
(1−0)τx(0) = e−

1
2
τ

x(1) = e
3
2
(1−τ)x(τ) = e

3
2
(1−τ)e−

1
2
τ = 1

which gives
3

2
(1− τ)− 1

2
τ = 0⇒ τ = 3/4.

2. We need to find a positive definite radially unbounded C1 function
that satisfies the HJBE

0 = min
u
{1

2
(x2 + u2) + V ′(x)(x+ x2 + u)} =

x2

2
− 1

2
(V ′(x))2 + V ′(x)(x+ x2)}

The HJBE is an ordinary differential equation in this scalar case. We
can easily see that

V ′(x) = x+ x2 ±
√

(x+ x2)2 + x2

= x+ x2 + x
√

(1 + x)2 + 1
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The second equality follows since this case is necessary to obtain a
positive definite solution. The optimal feedback control is

u∗(x) = −(x+ x2 + x
√

1 + (1 + x)2)

3. (a) A function V (x) is equal to the cost function J∗(x) if it is pos-
itive definite, quadratically bounded, and satisfies the Bellman
equation:

V (x) = min
u∈U(x)

{f0(x, u) + V (f(x, u))}

= min
u∈U(x)

{x2 + 2u2 + V (x+ u)}.

Furthermore, the minimizing argument gives the optimal feed-
back control. Since the cost function is quadratic and the dy-
namics are linear, we try a quadratic cost V (x) = px2. This
gives

px2 = min
u∈U(x)

{x2 + 2u2 + p(x+ u)2}

= min
u∈U(x)

{
(2 + p)(u+ x/2)2 + x2

(
1 + p− p2

2 + p

)}
.

The minimum is achieved by u = −x/2, and the Bellman equa-
tion is thus satisfied if

p = 1 + p− p2

2 + p
⇒ p = 1/2± 3/2.

The condition of positive definiteness gives p = 2. The cost is
thus J∗(x) = 2x2 and the optimal feedback is u = −x/2.

(b) The set of feasible controls are given by xk + uk = xk+1 ∈
[−∞, 3] ∪ [4, 12], or equivalently by u ∈ U(x) = [−∞, 3 − x] ∪
[4− x, 12− x].

Note that whenever the sequence x, x/2, x/22, . . . all belong to
[−∞, 3]∪ [4, 12], then the optimal control from (a) is feasible and
thus the cost is the same as in (a). Thus for x ∈ [−∞, 3]∪ [4, 6]∪
[8, 12] we have that J∗(x) = 2x2. What remain is to determine
J∗(x) and the optimal control for x ∈ (6, 8). Hence, we would
like to compute

V (x) = min
u∈U(x)

{x2 + 2u2 + V (x+ u)}

for x ∈ (6, 8). However, by noting that V (x) is increasing for x ≥
0 we can see that the minimum is always attained for x+ u < 6,
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and hence we arrive at

V (x) = min
x+u∈[−∞,3]∪[4,6]

{x2 + 2u2 + 2(x+ u)2}

= min
x+u∈[−∞,3]∪[4,6]

{
4((u+ x)− x/2)2 + 2x2

}
The minimum (as well as the optimal feedback) is thus u = 3−x
for x ∈ (6, 7] and u = 4−x for x ∈ [7, 8), and the minimal cost is

V (x) =


2x2 if x ∈ [−∞, 3] ∪ [4, 6] ∪ [8, 12]

(3− x/2)2 + 2x2 if x ∈ (6, 7)

(4− x/2)2 + 2x2 if x ∈ (7, 8).

Note that the optimal control is not unique if x = 7.

4. (a) The natural way to consider the problem is with τ as the state
and u(t) = τ(t + 1) − τ(t) as control. From the inequalities
τ(t) ≤ τ(t+ 1) ≤ τ(t) + 1 and τ(N) = M , it follows that M − t ≤
τ(N − t) ≤M for all t. This implies that the admissible controls
U(t, τ) is given by

U(t, τ) =


0 for τ = M
1 for τ = M −N + t
{0, 1} for M −N + t < τ < M,

(1)

The control problem now becomes

min ‖xN − yτ(N)‖+
∑N−1

t=0 ‖xt − yτ(t)‖
subj. to τ(t+ 1) = τ(t) + u(t), τ(1) = 1, u(t) ∈ U(t, τ(t)),

where U(t, τ) is given by (1).

(b) From the problem statement above it is clear that the dynamic
programming recursion is

J(t, τ) = min
u∈U(t,τ)

{
‖xt − yτ(t)‖+ J(t+ 1, τ + u)

}
. t = N − 1, N − 2, . . . , 0.

with boundary condition

J(N, τ) = ‖xN − yτ(N)‖.

5. (a) If we let x3(t) =
∫ t
0 u

2(s)ds then the optimal control problem can
be reformulated as

min − x1(T ) subj. to


ẋ1 = x2 + u, x1(0) = 0

ẋ2 = −x1, x2(0) = 0

ẋ3 = u2, x3(0) = 0, x3(T ) = c
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(b) Let us proceed as usual and introduce the HamiltonianH(x, u, λ) =
λ1(x2 + u)− λ2x1 + λ3u

2. Pointwise minimization gives

arg min
u
H(x, u, λ) = arg min

u
λ1u+ λ3u

2 =

−
λ1
2λ3

, λ3 > 0

∞, λ3 ≤ 0

The adjoint system is
λ̇1 = λ2, λ1(T ) = −1

λ̇2 = −λ1, λ2(T ) = 0

λ̇3 = 0, λ3(T ) = ?

From the last equation we see that λ3 must be a constant. It is also
clear that λ3 = k > 0 since otherwise u∗ =∞, which is unreasonable.

Solving the adjoint equation gives λ1(t) = − cos(T − t) and thus

u∗(t) =
1

2k
cos(T − t)

where

k =
1

2
√
c

√∫ T

0
cos(T − t)2dt

which follows since x3(T ) =
∫ T
0 u2(t)dt = c.

(c) k →∞ as T →∞, which implies u∗ → 0 as T →∞. For the state we
have

x1(T ) =
1

2k

∫ T

0
cos2(T − t)dt =

√
c

√∫ T

0
cos2(t)dt→∞

as T →∞.
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