

Optimal Control Theory SF 2852

Johan Karlsson

Optimization and Systems Theory, Department of Mathematics Royal Institute of Technology (KTH)

Fall 2018

Optimal Control Theory SF 2852

- 1 Course information and course logistics
- 2 Course overview and application examples

Course Information and Course Logistics

- This is a course on optimal control
 - Optimization problems involving difference or differential equations
 - Many engineering problems are naturally posed as optimal control problems
 - · Economics and logistics
 - Aerospace systems
 - Automotive industry
 - Autonomous systems and robotics
 - Bio-engineering
 - Process control
 - Power systems

Course Contents

- Optimal control is an important branch of mathematics
 - · Roots in the calculus of variations
 - · Dynamic programming
 - Pontryagin minimum principle (PMP)
 - · Linear quadratic control
 - Model predictive control (MPC)

Teachers

- Johan Karlsson (Email: johan.karlsson@math.kth.se)
- Silun Zheng, (Email: silunz@math.kth.se)

Course Material

- Optimal Control: Lecture notes
- Exercise notes on optimal control theory
- Some complementary material will be handed out. It will also be posted on the course homepage.

Homework

Four optional homework sets

- HW0 Some basics on linear systems and get started on convex optimization solvers. (No bonus points).
 - Due September 4, at 10.14
- HW1 Discrete dynamic programming and model predictive control.
 - Due on September 13, at 8.14.
- HW2 Computational methods (Project):
 - Final version (as pdf) Oct 2, at 10.14
 - Discussion/Feedback Oct 3, at 13.15 (mandatory to get bonus points).
- HW3 PMP and related topics.
 - Due on Oct 10, at 13.14.
 - Each homework has 3-5 problems.
 - Grading: Each homework may give maximum 2 bonus credits for the exam.

Johan Karlsson, KTH Optimal Control 2018

Final Written Exam

The final exam takes place on Wednesday October 26, 2018 at 8.00-13.00.

You must register for the exam during 20 sept - 04 oct 2018. Use "My Pages".

For questions about registrations, etc. contact students affairs office: studentoffice@math.kth.se.

Grade	Α	В	С	D	E	FX
Total credit (points)	45-56	39-44	33-38	28-32	25-27	23-24

- Total credit = exam score + homework score.
- The maximum exam score = 50. Maximum bonus from the homework sets = 6.
- You may use Mathematics Handbook and a formula sheet found on the course homepage.

Johan Karlsson, KTH Optimal Control 2018

Course Overview and Application Examples

- 1 Discrete time optimal control theory
- 2 Continuous time optimal control theory

Discrete Time Optimal Control

$$\min \phi(x_N) + \sum_{k=0}^{N-1} f_0(k, x_k, u_k) \quad \text{ subj. to } \quad \left\{ \begin{array}{l} x_{k+1} = f(k, x_k, u_k) \\ x_0 \text{ given, } x_k \in X_k \\ u_k \in U(k, x_k) \end{array} \right.$$

The variables x_1, \dots, x_N (states) and u_0, \dots, u_{N-1} (controls) are the ones we optimize over.

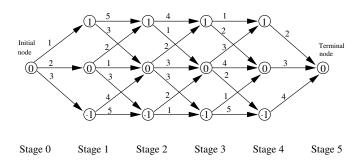
The functions ϕ and f_0 determine the terminal and running costs.

The function f and sets X_k and U determine feasible states and controls.

Sequential decision problem which contain as special cases

- · Graph search problems
- Combinatorial optimization
- Discrete time optimal control

Shortest Path problem

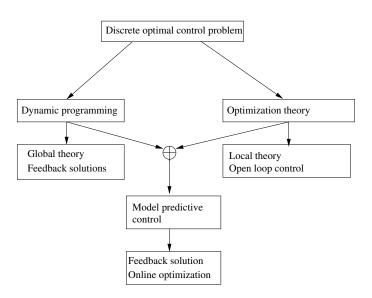


Find the shortest path from the initial node at stage 0 to the terminal node at stage 5

The Knapsack Problem

$$\max \sum_{j=1}^{n} \rho_{j} x_{j}$$
subject to $\sum_{j=1}^{n} w_{j} x_{j} \le c$, $x_{j} = 0$ or $1, j = 1, \ldots, n$.

Discrete Optimal Control Theory



Continuous Time Optimal Control

$$\min \Phi(t_1, x(t_1)) + \int_{t_0}^{t_1} f_0(t, x(t), u(t)) dt \text{ subj. to } \begin{cases} \dot{x}(t) = f(t, x(t), u(t)) \\ x(t_0) \in \mathcal{S}_0, \\ x(t_1) \in \mathcal{S}_1 \\ u \in \mathcal{U}(x) \end{cases}$$

The variables are the functions x(t) (state trajectory) and u(t) (control signal) that we optimize over.

Sometimes we let also t_1 be a variable.

The functions ϕ and f_0 determine the terminal and running costs.

The function f and sets S_0 , S_1 and U(x) determine feasible states and controls.

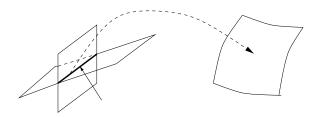
4 D > 4 A > 4 E > 4 E > 9 Q P

Continuous Time Optimal Control

The feasible solutions should satisfy

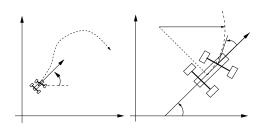
$$\begin{cases} \dot{x}(t) = f(t, x(t), u(t)) \\ x(t_0) \in S_0, \quad x(t_1) \in S_1 \\ u \in U(x) \end{cases}$$

The trajectories x(t) should start in S_0 and end in S_1 , *i.e.*,



 S_0 and S_1 are manifolds (intersection of surfaces).

Optimal Control of Car

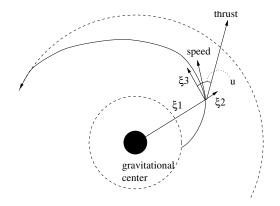


Problem: Shortest time. (= shortest path when constant speed v)

$$\min_{\omega,T} T \quad \text{subj. to} \quad \begin{cases} \dot{x}(t) = v \cos(\theta(t)), \ x(0) = 0, \ x(T) = \bar{x} \\ \dot{y}(t) = v \sin(\theta(t)), \ y(0), \ y(T) = \bar{y} \\ \dot{\theta}(t) = \omega(t), \ \theta(0) = 0, \ \theta(T) = \bar{\theta} \\ |\omega(t)| \le v/R, \ T \ge 0 \end{cases}$$

Orbit Transfer of Satellite

Problem: Orbit transfer



Orbit Transfer of Satellite

Problem:

$$\max_{u} x_{1}(T) \qquad \text{s.t.} \begin{cases} &\dot{x}_{1} = c_{3}^{2}x_{2} \\ &\dot{x}_{2} = \frac{x_{3}^{2}}{x_{1}} - \frac{1}{x_{1}^{2}} + \frac{\sin u}{1/c_{1} - c_{2}c_{3}t} \\ &\dot{x}_{3} = -\frac{c_{3}^{2}x_{2}x_{3}}{x_{1}} + \frac{c_{3}\cos u}{1/c_{1} - c_{2}c_{3}t} \\ &x(0) = (1\ 0\ 1)^{T} \\ &S_{f} = \{x \in \mathbf{R}^{3} | x_{2} = 0, \ x_{3} - \frac{1}{\sqrt{x_{1}}} = 0\} \end{cases}$$

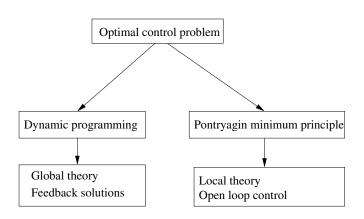
Resource Allocation

$$\max_{u(\cdot)} \int_{0}^{T} (1 - u(t))x(t)dt + x(T)$$

$$\text{subj. to } \begin{cases} \dot{x}(t) = \alpha u(t)x(t), \ (0 < \alpha < 1) \\ x(0) = x_{0} > 0 \\ u(t) \in [0, 1], \forall t \end{cases}$$

- A portion u(t) of the production rate x(t) is invested in the factory (and increases the production capacity)
- The rest (1 u(t))x(t) is stored in a warehouse.
- Maximimize the sum of the total amount of goods stored in the warehouse and the final capacity of the factory.

Optimal Control Theory



- Feedback control $u(t) = \psi(t, x(t))$ (depends on state)
- Open loop control $u(t) = \psi(t)$