Exam October 25, 2019 in SF2852 Optimal Control.

Examiner: Johan Karlsson, tel. 7908440.
Allowed books: The formula sheet and β mathematics handbook.
Solution methods: All conclusions should be properly motivated.
Note: Your personal number must be stated on the cover sheet. Number your pages and write your name on each sheet that you turn in!

Preliminary grades (Credit $=$ exam credit + bonus from homeworks): $23-24$ credits give grade Fx (contact examiner asap for further info), 25-27 credits give grade $\mathrm{E}, 28-32$ credits give grade D, $33-38$ credits give grade C, $39-44$ credits give grade B, and 45 or more credits give grade A.

1. Consider the optimal control problem

$$
\min \sum_{k=0}^{\infty}\left(x_{k}^{2}+4 u_{k}^{2}\right) \quad \text { subj.to } \quad x_{k+1}=2\left(x_{k}+u_{k}\right), x_{0}=\text { given }
$$

(a) Use the Bellman equation

$$
\begin{equation*}
V(x)=\min _{u}\left\{f_{0}(x, u)+V(f(x, u))\right\} \tag{8p}
\end{equation*}
$$

to compute the optimal control and the optimal cost.
(b) Compute the eigenvalue of the closed loop system. (2p)
2. In this problem you will solve the following optimal control problem

$$
\min \sum_{k=0}^{2}\left(x_{k}^{2}+u_{k}^{2}\right) \text { subj. to } \quad\left\{\begin{array}{l}
x_{k+1}=x_{k}+u_{k}, \quad x_{0}=0 ; x_{3}=2 \\
u_{k} \in U_{k}\left(x_{k}\right)=\left\{u: 0 \leq x_{k}+u \leq 2 ; u \text { is an integer }\right\}
\end{array}\right.
$$

(a) Formulate the dynamic programming algorithm for this problem.
\qquad
(b) Use the dynamic programming recursion to find the optimal solution.
\qquad
3. Consider the optimal control problem
$\min \int_{0}^{t_{f}} u(t) d t \quad$ s.t. $\quad\left\{\begin{array}{l}\dot{x}(t)=-x(t)+u(t), \quad x(0)=x_{0} \quad x\left(t_{f}\right)=0 \\ u \in[0, m]\end{array}\right.$
(a) Suppose t_{f} is fixed. For what values of x_{0} is it possible to find a solution to the above problem, i.e. for what values of x_{0} can the constraints be satisfied?
(b) Find the optimal control to (1) (for those x_{0} you found in (a)). (5p)
(c) Let t_{f} be free, i.e. consider the optimal control problem

$$
\min \int_{0}^{t_{f}} u(t) d t \quad \text { s.t. } \quad\left\{\begin{array}{l}
\dot{x}(t)=-x(t)+u(t), \quad x(0)=x_{0} \quad x\left(t_{f}\right)=0 \\
u \in[0, m] ; t_{f} \geq 0
\end{array}\right.
$$

Solve this optimal control problem for the case when $x_{0}<0$.
4. Consider the following value function (cost-to-go function)

$$
\begin{aligned}
& V\left(t_{0}, x_{0}\right)= \max _{u(t) \geq 0, t \in\left[t_{0}, T\right]} \int_{t_{0}}^{T} \sqrt{u(t)} d t \\
& \text { s.t. }\left\{\begin{array}{l}
\dot{x}(t)=\beta x(t)-u(t) \\
x(t) \geq 0, t \in\left[t_{0}, T\right] \\
x\left(t_{0}\right)=x_{0}
\end{array}\right.
\end{aligned}
$$

where $\beta>0$. Verify that $V(t, x)=f(t) \sqrt{x}$, where

$$
f(t)=\sqrt{\frac{e^{\beta(T-t)}-1}{\beta}}
$$

Comment: Note that the value function is only defined on $[0, T] \times R_{+}$, where $R_{+}=(0, \infty)$ (i.e. $\left.V:[0, T] \times R_{+} \rightarrow R_{+}\right)$. The theorems presented in the course are also valid when the domain is restricted to such a set.
5. Consider the following optimization problem

$$
\begin{align*}
\inf _{x(t), u(t), t \in[0,1]} & \int_{0}^{1} t u(t)^{2} d t \tag{2}\\
\text { subject to } \dot{x}(t) & =u(t) \\
& x(0)=0, x(1)=1
\end{align*}
$$

where $\inf (S)$ denotes the infimum of $S \subset \mathbf{R}$, i.e., the greatest lower bound on the numbers in S.
(a) Find the infimum in (2).
(b) Find a sequence of feasible control functions $u_{k}(t)$ such that the corresponding objective function in (2) converges to the infimum as $k \rightarrow \infty$. Hint: Consider restricting the problem to a set of controllers that are zero in an interval in the beginning.

Good luck!

Solutions

1. (a) The Bellman equation becomes

$$
V(x)=\min _{u}\left\{x^{2}+4 u^{2}+V(2 x+2 u)\right\}
$$

Let us try $V(x)=p x^{2}$. We get

$$
\begin{aligned}
p x^{2} & =\min _{u}\left\{x^{2}+4 u^{2}+p(2 x+2 u)^{2}\right\} \\
& =\min _{u}\left\{4(1+p)\left(u+\frac{p}{1+p} x\right)^{2}-\frac{4 p^{2}}{1+p} x^{2}+(1+4 p) x^{2}\right\}
\end{aligned}
$$

This gives the optimal control

$$
u=-\frac{p}{1+p} x
$$

where p is the positive definite solution to the Riccati equation

$$
\begin{array}{ll}
& p=-\frac{4 p^{2}}{1+p}+(1+4 p) \\
\Leftrightarrow & p^{2}-4 p-1=0 \\
\Leftrightarrow & p=2 \pm \sqrt{5}
\end{array}
$$

Hence, $p=2+\sqrt{5}$ and

$$
\begin{aligned}
u^{*} & =-\frac{2+1 \sqrt{5}}{3+\sqrt{5}} x \\
V\left(x_{0}\right) & =(2+\sqrt{5}) x_{0}^{2}
\end{aligned}
$$

(b) The closed loop system is

$$
x_{k+1}=\left(2-\frac{4+2 \sqrt{5}}{3+\sqrt{5}}\right) x=\frac{2}{3+\sqrt{5}} x_{k}
$$

and hence the eigenvalue is $\frac{2}{3+\sqrt{5}}$.
2. (a) The dynamic programming recursion can be stated

$$
\begin{aligned}
& J_{k}\left(x_{k}\right)=\min _{u_{k} \in U_{k}\left(x_{k}\right)}\left\{x_{k}^{2}+u_{k}^{2}+J_{k+1}\left(x_{k}+u_{k}\right)\right\}, \quad k=0,1,2 \\
& J_{3}\left(x_{3}\right)= \begin{cases}0, & x_{3}=2 \\
\infty, & \text { otherwise }\end{cases}
\end{aligned}
$$

(b) For the second stage we have the following solution

$$
J_{2}\left(x_{2}\right)=\min _{u_{2}=2-x_{2}}\left\{x_{2}^{2}+u_{2}^{2}\right\}=2 x_{2}^{2}-4 x_{2}+4
$$

Hence, the solution is given according to the following table

x_{2}	$J_{2}\left(x_{2}\right)$	$\mu\left(2, x_{2}\right)$
0	4	2
1	2	1
2	4	0

In the first stage we get

$$
J_{1}\left(x_{1}\right)=\min _{-x_{1} \leq u_{1} \leq 2-x_{1}} \underbrace{\left\{x_{1}^{2}+u_{1}^{2}+J_{2}\left(x_{1}+u_{1}\right)\right\}}_{J_{1}\left(x_{1}, u_{1}\right)}
$$

The cost $J_{1}\left(x_{1}, u_{1}\right)$ for all feasible pairs $\left(u_{1}, x_{1}\right)$ are given in the following table.

x_{1}	$u_{1}=-2$	-1	0	1	2
0			4	3	8
1		6	3	6	
2	12	7	8		

which implies the follow optimal solution

x_{1}	$J_{1}\left(x_{1}\right)$	$\mu\left(1, x_{1}\right)$
0	3	1
1	3	0
2	7	-1

In the initial stage we have the Bellman recursion

$$
J_{0}\left(x_{0}\right)=\min _{-x_{0} \leq u_{0} \leq 2-x_{0}} \underbrace{\left\{x_{0}^{2}+u_{0}^{2}+J_{1}\left(x_{0}+u_{0}\right)\right\}}_{J_{0}\left(x_{0}, u_{0}\right)}
$$

The cost $J_{0}\left(x_{0}\right)$ for all feasible pairs $\left(x_{0}, u_{0}\right)$ are given in the following table

x_{0}	$u_{0}=-2$	-1	0	1	2
0			3	4	11
1		5	4	9	
2	11	8	11		

and thus

x_{0}	$J_{0}\left(x_{0}\right)$	$\mu\left(0, x_{0}\right)$
0	3	0
1	4	0
2	8	-1

The optimal control is thus

$$
u_{0}^{*}=0, u_{1}^{*}=1, u_{2}^{*}=1
$$

and the corresponding optimal state trajectory is

$$
x_{0}^{*}=0, x_{1}^{*}=0, x_{2}^{*}=1, x_{3}^{*}=2
$$

3. (a) The solution to the differential equation is

$$
x(t)=e^{-t} x_{0}+\int_{0}^{t} e^{-(t-s)} u(s) d s
$$

Since $u(t) \geq 0$ it follows that $x(t) \geq e^{-t} x_{0}$, which never can become zero in finite time unless $x_{0} \leq 0$. Suppose $x_{0}<0$. It is possible to bring the state back to zero in time t_{f} if

$$
e^{-t_{f}} x_{0}+\left(1-e^{-t_{f}}\right) m \geq 0
$$

i.e., if $x_{0} \geq-\left(e^{t_{f}}-1\right) m$.

Hence, the constraint can be satisfied if $x_{0} \in\left[-\left(e^{t_{f}}-1\right) m, 0\right]$.
(b) The Hamiltonian function is $H(x, u, \lambda)=u+\lambda(-x+u)$. Pointwise minization gives

$$
\begin{aligned}
u^{*} & =\bar{\mu}(x, \lambda)=\operatorname{argmin}_{u \in[0, m]} H(x, u, \lambda)=\operatorname{argmin}_{u \in[0, m]}(1+\lambda) u \\
& = \begin{cases}0, & \lambda>-1 \\
m, & \lambda<-1\end{cases}
\end{aligned}
$$

The adjoint differential equation is

$$
\dot{\lambda}=-\frac{\partial H}{\partial x}=\lambda
$$

which has the solution $\lambda(t)=e^{t} \lambda_{0}$, for some $\lambda_{0} \in R$. Hence, the optimal control is

$$
u^{*}(t)= \begin{cases}0, & e^{t} \lambda_{0}>-1 \\ m, & e^{t} \lambda_{0}<-1\end{cases}
$$

Hence, there are three cases
(a) $\lambda_{0} \geq 0 \Rightarrow u^{*}(t)=0, t \in\left[0, t_{f}\right]$
(b) $\lambda_{0} \in(-1,0) \Rightarrow u^{*}(t)$ will switch from $u^{*}(t)=0$ to $u^{*}(t)=m$ at $t=-\ln \left(\left|\lambda_{0}\right|\right)$
(c) $\lambda_{0}<-1 \Rightarrow u^{*}(t)=m, t \in\left[0, t_{f}\right]$

Hence, the possible control sequences are $\{0\},\{0,1\}$, and $\{1\}$, i.e. the optimal control is

$$
u^{*}(t)= \begin{cases}0, & 0 \leq t \leq t^{*} \\ m, & t^{*} \leq t \leq t_{f}\end{cases}
$$

where $t^{*} \in\left[0, t_{f}\right]$ must be determined. One way to determine t^{*} is to consider the closed form solution
$x^{*}\left(t_{f}\right)=e^{-t_{f}} x_{0}+\int_{t^{*}}^{t_{f}} e^{-\left(t_{f}-s\right)} u^{*}(s) d s=e^{-t_{f}} x_{0}+\left(1-e^{-\left(t_{f}-t^{*}\right)}\right) m=0$
Hence, we get

$$
t^{*}=t_{f}+\ln \left(\frac{m+e^{-t_{f}} x_{0}}{m}\right)
$$

which is between $\left[0, t_{f}\right]$ when $x_{0} \in\left[-\left(e^{t_{f}}-1\right) m, 0\right]$.
(c) Let us investigate the condition

$$
H\left(x^{*}(t), u^{*}(t), \lambda(t)\right)=0, t \in\left[0, t_{f}^{*}\right]
$$

We already now from above that the optimal control is of bangbang type and there is at most one switch from $u^{*}(t)=0$ to $u^{*}(t)=m$. Suppose $u^{*}(t)=0$ on $t \in\left[0, t^{*}\right]$. Then

$$
H\left(x^{*}(t), u^{*}(t), \lambda(t)\right)=\lambda(t) x^{*}(t)=e^{t} \lambda_{0} e^{-t} x_{0}=\lambda_{0} x_{0}=0, t \in\left[0, t^{*}\right]
$$

However, we know from above that $\lambda_{0}<0$ if there is a switch and $x_{0}<0$ by assumption. This contradicts the assumption that there is a switch and it follows that the optimal control is $u^{*}(t)=0$, for all $t \geq 0$. Note that this implies $t_{f}^{*}=\infty$, i.e. it takes infinitely long time to do the transfer but the cost is zero.
4. We use the verification theorem, i.e., we need to verify that

$$
-\frac{\partial V}{\partial t}(t, x)=\max \left\{\sqrt{u}+\frac{\partial V}{\partial x}(t, x)^{T}(\beta x-u)\right\}
$$

for some $V:[0, T] \times(0, \infty) \rightarrow R$ With $V(t, x)=f(t) \sqrt{x}$, we get

$$
\begin{aligned}
-\dot{f}(t) \sqrt{x} & =\max \left\{\sqrt{u}+\frac{f(t)}{2 \sqrt{x}}(\beta x-u)\right\} \\
& =\frac{\sqrt{x}}{f(t)}+\frac{f(t)}{2 \sqrt{x}}\left(\beta x-\frac{x}{f(t)^{2}}\right.
\end{aligned}
$$

where we used that $u=\sqrt{x} / f(t)$ is the maximizing control. This equation is satisfied if

$$
-f(t) \dot{f}(t)=\frac{1}{2}\left(1+\beta f(t)^{2}\right)
$$

which implies

$$
f(t)^{2}=\frac{e^{\beta(T-t)}-1}{\beta}
$$

Finally notice that $V(T, x)=f(T) \sqrt{x}=0$, since $f(T)=0$.
5. For a given $0<\epsilon<1$, consider the optimal controller u_{ϵ} given the additional constraint that it must be zero in the interval $[0, \epsilon]$. The corresponding restricted optimization problem is

$$
\begin{aligned}
& \inf _{x(t), u(t), t \in[\epsilon, 1]} \int_{\epsilon}^{1} t u(t)^{2} d t \\
& \text { subject to } \dot{x}(t)=u(t) \\
& x(\epsilon)=0, \quad x(1)=1 .
\end{aligned}
$$

The Hamiltonian is given by $H(t, x, u, \lambda)=t u^{2}+\lambda u$, and the minimizing u is given by

$$
\mu(t, x, \lambda)=-\frac{\lambda}{2 t} .
$$

The adjoint dynamics are

$$
\dot{\lambda}=-\frac{\partial H}{\partial x}=0,
$$

hence λ is constant. The optimal control for the restricted problem is thus $u_{\epsilon}(t)=-\frac{\lambda}{2 t}$ where λ is selected so that $x(1)=1$ is satisfied. This can be determined by

$$
1=x(1)=\int_{\epsilon}^{1} u(t) d t=\int_{\epsilon}^{1}-\frac{\lambda}{2 t} d t=\frac{\lambda}{2} \log (\epsilon),
$$

and thus $\lambda=2 / \log (\epsilon)$ and

$$
u_{\epsilon}(t)= \begin{cases}0 & t \in[0, \epsilon) \\ -\frac{1}{t \log (\epsilon)} & t \in[\epsilon, 1]\end{cases}
$$

is the optimal controller subject to the restricted that it is zero on $[0, \epsilon]$. The cost corresponding to this controller is

$$
\int_{\epsilon}^{1} t u(t)^{2} d t=\int_{\epsilon}^{1} \frac{\lambda^{2}}{4 t} d t=-\frac{\lambda^{2}}{4} \log (\epsilon)=-\frac{1}{\log (\epsilon)} .
$$

Note that $-\frac{1}{\log (\epsilon)} \rightarrow 0$ as $\epsilon \rightarrow 0$, hence by selecting a sequence of controllers as u_{ϵ} and letting $\epsilon \rightarrow 0$ we see that the infimum is less or equal to 0 . Further, note that the cost is always non-negative, hence 0 is the greatest lower bound to the cost.

