
Homework 1: SF2852: Optimal Control

Grading: You may use min

(
2,

your credit

10

)
extra points on the exam.

(A) Note that the total credit in this homework set is more than you need
to get full bonus.

(B) You need to turn in your own solution.

Problem 1

Solve the following optimal control problems using dynamic programming

min 2(x2 + 1)2 + (u20 + u21)

subject to xk+1 = xk + uk; for k = 0, 1, and x0 = 1.

Determine the minimal cost and the corresponding u0, u1, x1, x2. . . . . . . (4p)

Problem 2

A decision maker must choose between two activities over a time interval
[0, tf ]. Each activity earns a reward at rate gk(t), k = 1, 2. Every switch
between the two activities costs c > 0. As an example, the reward for
starting with activity 1, switch to activity 2 at time t1 and back to 1 at time
t2 > t1 earns the total reward∫ t1

0
g1(t)dt+

∫ t2

t1

g2(t)dt+

∫ tf

t2

g1(t)dt− 2c

We want to find a switching sequence that maximize the total reward.
Switching can only occur inside the the interval (0, tf ).

Assume the function g1(t)− g2(t) changes sign a finite number of times
in the interval (0, tf ).

(a.) Formulate the problem as a sequential optimization problem and then
formulate the corresponding DP recursion. . . . . . . . . . . . . . . . . . . . . . . (3p)

(b.) Solve the dynamic programming problem in (a) using the DP recursion
for the case when c = 2 and

g1(t) =


4, 0 ≤ t < 1

0, 1 ≤ t < 2

5, 2 ≤ t ≤ 3

, g2(t) =


1, 0 ≤ t < 1

6, 1 ≤ t < 2

2, 2 ≤ t ≤ 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)
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Problem 3

Consider the system in Figure 1.

(a) Determine a diagonal state space realization of the linear system (the
A matrix should be diagonal)

ẋ = Ax+Bu, x(0) = 0

y = Cx

Hint: Do a partial fraction expension of G(s) =
s− 1

s2 + 3s+ 2

s-1

s +3s+22

u(t) y(t)

Figure 1: A signal is sent through a filter with transfer function G(s) =
s−1

s2+3s+2
.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

(b) Assume the control is constrained as |u(t)| ≤ 1. Determine an explicit
expression for the optimal input (as a function of tf ) such that the
output y(tf ) is maximized, i.e. solve

maxCx(tf ) subject to

{
ẋ = Ax+Bu, x(0) = 0

|u(t)| ≤ 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)
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Problem 4

The purpose of this problem is to balance an inverted pendulum using Model
Predictive Control (MPC). The pendulum is subject to the gravity force and
should be stabilized in the upward vertical position controlling the steering
torque without using too much power.

τ

θ

Figure 2: The inverted pendulum. Here τ is the torque and θ is the angular
position.

In this exercise an approximated discrete-time model will be considered
namely

zk+1 = Φzk + Γuk

yk = Czk
(1)

where T is the sampling time and the control signal is such that τ(t) = uk
for t ∈ [kT, (k + 1)T ]. Furthermore we have

zk =

[
θ(kT )

θ̇(kT )

]
, Φ =

[
1 T
αT 1

]
, Γ =

[
T 2/2
T

]
C =

[
1 0

]
where α is a constant that depends on the physical parameters. This model
can be seen as the first order approximation of the small angle dynamic for
discrete time. Hereafter it will be assumed to be the true model.

Considering the control purpose, a natural optimization criterion is the
following linear quadratic problem

min q|zt+N |t|2 +
∑N−1

k=0 (q|Czt+k|t|2 + ru2t+k|t)

s.t. zt+k+1|t = Φzt+k|t + Γut+k|t k = 0, 1, . . . , N − 1
(2)
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where q and r are positive weights.
In the following problems we ask you to implement the above quadratic

optimization problem for MPC of the inverted pendulum process. You
should also experiment with the algorithm.

For a) and b) there are two options for the implementation:

1. Implement this using Matlab’s function Quadprog. The appendix con-
tains a Matlab skeleton that defines a suggested structure for your
code. There are also some hints on how to implement the system
matrices.

2. You can also write this using CVX as in HW#0.

(a) Solve the problem (2) using Matlab using the following parameter

α = 0.5, initial condition z0|0 =
(
0.5 1

)T
, r = 1, the sampling time

T = 0.1 and

(i) N = 5, q = 5,

(ii) N = 10, q = 5,

(iii) N = 10, q = 1.

What conclusions can you make regarding the convergence to the ori-
gin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

Hint for the Matlab quadprog implementation: Rewrite the optimiza-
tion problem (2) on the form

min
1

2
xTHx

s.t. Ax = b

where x =
(
zTt+1|t . . . zTt+N |t ut|t . . . ut+N−1|t

)T
(note that zt|t is

given and is not a variable in the optimization problem). Note also
that the right hand side b depends on the last measured state zt|t and
must be updated in every iteration of the MPC algorithm (see code in
the appendix).

(b) The actuator used to control the pendulum has limitations on the max-
imum torque applicable. Hence it is useful to take these constraints in
the control problem. It can be formulated as

min qf |zt+N |t|2 +
∑N−1

k=0 (q|Czt+k|t|2 + ru2t+k|t)

s.t

{
zt+k+1|t = Φzt+k|t + Γut+k|t k = 0, . . . , N − 1

−1 ≤ ut+k|t ≤ 1, k = 0, . . . , N − 1

(3)
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and apply MPC with the following parameter values z0|0 =
(
0.5 1

)T
,

r = 1,

(i) N = 5, q = 5

(ii) N = 10, q = 5,

(iii) N = 10, q = 1.

What are your conclusions?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

Hint for the Matlab quadprog implementation: rewrite the problem on
the form

min
1

2
xTHx

s.t.
Aeqx = beq

Ax ≤ b.

(c) The predicted states can be written as a function of ut+k|t, . . . , ut|t.
Hence, one may define an optimization problem in the reduced vari-

able vector x =
(
ut|t . . . ut+N−1|t

)T
. Formulate the optimization

problem on the form

min
1

2
xTHx + xT f + g

s.t.
Aeqx = beq

Ax ≤ b

You don’t need to implement this in Matlab. If you selected to use the
CVX formulation to solve a) and b), then the hints in those problems
may be useful to get started on this problem. . . . . . . . . . . . . . . . . . . (2p)
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Problem 5

Implement a solution of the Knapsack problem,

max
n−1∑
j=0

pjuj

subject to
n−1∑
j=0

wjuj ≤W, uj = 0 or 1, j = 0, . . . , n− 1,

using dynamic programming in, e.g., Matlab. Assume that W ∈ N and
wj ∈ N, pj ∈ R are given for j = 0, 1, . . . , n− 1. . . . . . . . . . . . . . . . . . . . . . .(4p)

Hint: Reformulate this as we did in class by introducing a state describ-
ing, e.g., the used space xk :=

∑k−1
j=0 wjuj. The assumptions on the weights

to be integers allows for representing all possible states as {0, 1, . . . ,W}.

Good luck!
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1 Matlab code, inverted pendulum

%

%------- Basic system model

%

clear;

T=0.1;

Phi=[1 T;0.5*T 1];

Gam=[T^2/2;T];

C=[1 0];

n=size(Phi,1);

m=size(Gam,2);

%

%------- Parameters --------

%

q=5;

r=1;

N=5;

z0=[0.5;1];

%

%------- Define matrices for the QP --------

%

For you to do!

%

%----- For problem 2 with inequalities ---------

%

A=[];

b=[];

%

%----- Cost ------------

%

For you to do!

%

%------- MPC algorithm ------
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%

M=100; %time horizon

zt=z0;

yvec=[];

uvec=[];

options=optimset(’largescale’,’off’);

for flcnt1=1:M

beq=AA*zt; % The matrix AA defines how the last measured state

% determines the right hand side in the equality constraint.

x=quadprog(H,f,A,b,Aeq,beq,[],[],[],options);

ut=x(n*N+1);

zt=Phi*zt+Gam*ut;

yvec=[yvec;C*zt];

uvec=[uvec;ut];

end

tvec=T*(1:1:M);

subplot(3,1,1) %For the other two sets of parameters you should change

%the third index to 2 and 3, respectively.

plot(tvec,yvec,’-’,tvec,uvec,’--’)

grid

2 Hints for the implementation

Here follows some hints that simplifies the Matlab implementation of block
matrices

1. Block diagonal matrices can be created using the command blkdiag(A,B).

2. The command kron(eye(N),M) generates the block matrix
M 0 . . . 0
0 M . . . 0
...

...
. . .

...
0 0 . . . M
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Generally, we have

kron(A,M) =

a11B a12M . . . a1nM
...

...
. . .

...
an1B an2M . . . annM


3 Knapsack problem, example implementation

% Number of items

N=10;

% Total Weight allowed

W=50;

% Create random items

w=round(rand(N,1)*W/N^(1/2)+0.5);

p=W/N^(1/2)*rand(N,1);

Wgrid=0:W;

% Compute optimal cost to go and optimal control

J=zeros(W+1, N+1);

U_opt=zeros(W+1, N+1);

for k=N:-1:1

% For you to do!!

% Determine J in the kth stage

% No choise if item is larger than remaining space

% Two options if item is smaller than remaining space

% Determine U_opt, i.e., the optimal control at each stage and position

end

% Compute optimal path from optimal control

U_path=zeros(size(U_opt));

opt_path=zeros(1,N);

opt_path(1)=1;

U_path(1,1)=1;
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for k=1:N

opt_path(k+1)=opt_path(k)+U_opt(opt_path(k),k)*w(k);

U_path(opt_path(k+1),k+1)=1;

end

% Plot results

figure(1)

subplot(1,2,1)

imagesc(0:N,Wgrid, min(U_path+0.1*U_opt,1))

colorbar

xlabel(’Item/Stage’)

ylabel(’Weight utilized’)

title(’Optimal control’)

subplot(1,2,2)

imagesc(0:N,Wgrid, J)

colorbar

xlabel(’Item/Stage’)

ylabel(’Weight utilized’)

title(’Cost to go’)

figure(2)

%subplot(2,2,3)

plot(0:N-1, w, ’sk’, 0:N-1, p, ’*r’)

legend(’Weight’, ’Value’)

grid on

ylim([0,ceil(max([w(:);p(:)]))])

xlabel(’Item’)

ylabel(’Value/Weight’)
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