Exam December 16, 2020 in SF2852 Optimal Control.

Examiner: Johan Karlsson, tel. 7908440.
Allowed aids: The formula sheet and mathematics handbook (by Råde and Westergren). (Note that calculator is not allowed.)

Solution methods: All conclusions should be properly motivated.
Note: Your personal number must be stated on the cover sheet. Number your pages and write your name on each sheet that you turn in!

Preliminary grades (Credit $=$ exam credit + bonus from homeworks): 23-24 credits give grade Fx (contact examiner asap for further info), 25-27 credits give grade E, $28-32$ credits give grade D, $33-38$ credits give grade C, 39-44 credits give grade B, and 45 or more credits give grade A.

1. Consider the sequential decision problem

$$
\max \sum_{k=0}^{N-1} \beta^{k} u_{k}^{1-\nu} \quad \text { subj. to } \quad\left\{\begin{array}{l}
x_{k+1}=\alpha\left(x_{k}-u_{k}\right), \quad 0 \leq u_{k} \leq x_{k} \\
x_{0}=W
\end{array}\right.
$$

The problem is to maximize the utility of spending u_{k} amount of capital each time instance given an initial fund $x_{0}=W$. We assume that $\beta, \alpha>0$, and $1>\nu>0$ are given.
(a) Do two iterations of the dynamic programming algorithm and determine the optimal control at stage $N-1$ and $N-2$. . (6p)
(b) Determine the optimal value function at stage $N-1$ and $N-2$. Hint: The derivation of the value function at stage $N-2$ is simplified if you put $\gamma=\left(\beta \alpha^{1-\nu}\right)^{1 / \nu}$.
2. Find the optimal solution (if such exists) and the optimal value of the following optimal control problem

$$
\min \int_{0}^{2}\left(u^{2}(t)+(1-t) u(t)\right) d t \text { subj. to } \quad\left\{\begin{array}{l}
\dot{x}(t)=u(t) \tag{10p}\\
x(0)=0, x(2)=1 / 2, \\
u(t) \geq 0
\end{array}\right.
$$

3. Consider the following nonlinear optimal control problem

$$
\min x(1)^{2}+\int_{0}^{1}(x(t) u(t))^{2} d t \quad \text { subj. to } \quad\left\{\begin{array}{l}
\dot{x}=x(t) u(t) \\
x(0)=1
\end{array}\right.
$$

Solve the problem using dynamic programming.
Hint: Use the ansatz $V(t, x)=p(t) x^{2}$.
4. Consider the following optimal control problem

$$
\max x_{2}(T) \text { subj. to } \begin{cases}\dot{x}_{1}=-x_{2}+u, & x_{1}(0)=0 \\ \dot{x}_{2}=x_{1}, & x_{2}(0)=0 \\ \int_{0}^{T} u^{2}(t) d t=1, & \end{cases}
$$

where $T>0$ is given.
(a) Reformulate the optimal control problem as a problem on state space form (with constraints as considered in the course). . (1p)
(b) Solve the optimal control problem. (7p)
(c) What happens with $x_{2}(T)$ when $T \rightarrow \infty$. (2p)
5. Consider the following infinite horizon optimal control problem

$$
\min \int_{0}^{\infty}\left(x_{1}(t)^{2}+x_{2}(t)^{2}+u(t)^{2}\right) d t \quad \text { s.t. } \quad\left\{\begin{array}{l}
\dot{x}_{1}(t)=x_{2}(t)+u(t) \tag{1}\\
\dot{x}_{2}(t)=2 x_{2}(t)-x_{1}(t)+u(t) \\
x_{1}(0)=x_{10} \\
x_{2}(0)=x_{20}
\end{array}\right.
$$

(a) Find the optimal feedback solution (when such exists) and the optimal value of the optimal control problem (1).
(b) Is the solution in (a) unique?
(c) Is the closed loop system stable?

Good luck!

Solutions

1. Dynamic programming gives

$$
\begin{aligned}
V_{k}(x) & =\sup _{0 \leq u \leq x}\left\{\beta^{k} u^{1-\nu}+V_{n+1}(\alpha(x-u))\right\} \\
V_{N}(x) & =0
\end{aligned}
$$

We obtain

$$
V_{N-1}(x)=\beta^{N-1} x^{1-\nu} \quad \text { and } \quad u_{N-1}(x)^{*}=x
$$

i.e., we should spend all our capital in the last step. For the next prior step we have

$$
V_{N-2}(x)=\sup _{0 \leq u \leq x}\left\{\beta^{N-2} u^{1-\nu}+\beta^{N-1} \alpha^{1-\nu}(x-u)^{1-\nu}\right\}
$$

Setting the derivative of the above expression to zero and solving for u gives

$$
(1-\nu) u^{-\nu}=\beta \alpha^{1-\nu}(1-\nu)(x-u)^{-\nu}
$$

From this we get

$$
u_{N-2}^{*}=\left(1+\left(\beta \alpha^{1-\nu}\right)^{1 / \nu}\right)^{-1} x
$$

which is in the interval $(0, x)$. We have

$$
V_{N-2}(x)=\beta^{N-2}\left(1+\left(\beta \alpha^{(1-\nu)}\right)^{1 / \nu}\right)^{\nu} x^{1-\nu}
$$

Note that if $\nu=1$ then the control is irrelevant.
2. The Hamiltonian is

$$
H(x, u, \lambda)=u^{2}+(1-t) u+\lambda u
$$

and note that λ is constant since

$$
\dot{\lambda}=-\frac{\partial H}{\partial x}=0
$$

Minimizing the Hamiltonian with respect to $u \geq 0$ gives

$$
u(t)=\max (0,(t-1-\lambda) / 2)
$$

We now need to find λ such that this control is feasible, i.e.,

$$
\begin{aligned}
1 / 2 & =x(2)=x(0)+\int_{0}^{2} u(t) d t=\int_{0}^{2} \max (0,(t-1-\lambda) / 2) d t \\
& =\int_{1+\lambda}^{2}(t-1-(\lambda) / 2) d t=(\lambda-1)^{2} / 4
\end{aligned}
$$

This is satisfied if $\lambda=1 \pm \sqrt{2}$, and the only reasonable value is $\lambda=$ $1-\sqrt{2}$. This gives

$$
u(t)=\max (0,(t-2+\sqrt{2}) / 2)
$$

Plugging this in gives the objective value $(2 \sqrt{(} 2)-3) / 6$.
3. The HJBE is

$$
\begin{aligned}
-\frac{\partial V}{\partial x} & =\min _{u}\left\{(x u)^{2}+\frac{\partial V}{\partial x} x u\right\} \\
& =\min _{u}\left\{x^{2}\left(u+\frac{1}{2 x} \frac{\partial V}{\partial x}\right)^{2}-\frac{1}{4}\left(\frac{\partial V}{\partial x}\right)^{2}\right\} \\
V(1, x) & =x^{2}
\end{aligned}
$$

whith the minimizing control $u^{*}=-\frac{1}{2 x} \frac{\partial V}{\partial x}$. With the ansatz $V(t, x)=$ $p(t) x^{2}$ the HJBE reduces to

$$
\begin{aligned}
-\dot{p}(t) x^{2} & =-p(t)^{2} x^{2} \\
p(1) x^{2} & =x^{2}
\end{aligned}
$$

which should hold identically for all $(t, x) \in[0,1] \times R$. We get the following ODE for p :

$$
\dot{p}(t)=p(t)^{2}, \quad p(1)=1
$$

which has the solution $p(t)=1 /(2-t)$. The resulting optimal control is

$$
u^{*}(t)=-\frac{1}{2-t}, \quad 0 \leq t \leq 1
$$

Note that the solution to the state equation is

$$
\dot{x}(t)=-\frac{1}{2-t} x(t), \quad x(0)=1
$$

is $x(t)=1-0.5 t$ which is nozero on $0 \leq t \leq 1$.
4. (a) If we let $x_{3}(t)=\int_{0}^{t} u^{2}(s) d s$ then the optimal control problem can be reformulated as

$$
\min -x_{2}(T) \text { subj. to } \begin{cases}\dot{x}_{1}=-x_{2}+u, & x_{1}(0)=0 \\ \dot{x}_{2}=x_{1}, & x_{2}(0)=0 \\ \dot{x}_{3}=u^{2}, & x_{3}(0)=0, x_{3}(T)=1\end{cases}
$$

(b) Let us proceed as usual and introduce the Hamiltonian $H(x, u, \lambda)=$ $\lambda_{1}\left(-x_{2}+u\right)+\lambda_{2} x_{1}+\lambda_{3} u^{2}$. Pointwise minimization gives

$$
\arg \min _{u} H(x, u, \lambda)=\arg \min _{u} \lambda_{1} u+\lambda_{3} u^{2}= \begin{cases}-\frac{\lambda_{1}}{2 \lambda_{3}}, & \lambda_{3}>0 \\ \infty, & \lambda_{3} \leq 0\end{cases}
$$

The adjoint system is

$$
\begin{cases}\dot{\lambda}_{1}=-\lambda_{2}, & \lambda_{1}(T)=0 \\ \dot{\lambda}_{2}=\lambda_{1}, & \lambda_{2}(T)=-1 \\ \dot{\lambda}_{3}=0, & \lambda_{3}(T)=?\end{cases}
$$

From the last equation we see that λ_{3} must be a constant. It is also clear that $\lambda_{3}=k>0$ since otherwise $u^{*}=\infty$, which is unreasonable. Note that the transition matrix for both the primal system and the adjoint system is

$$
\Phi(t)=\left(\begin{array}{cc}
\cos (t) & -\sin (t) \\
\sin (t) & \cos (t)
\end{array}\right)
$$

Solving the adjoint equation gives $\lambda_{1}(t)=\sin (T-t)$ and thus

$$
u^{*}(t)=-\frac{1}{2 k} \sin (T-t)
$$

where

$$
k=\frac{1}{2} \sqrt{\int_{0}^{T} \sin (T-t)^{2} d t}
$$

which follows since $x_{3}(T)=\int_{0}^{T} u^{2}(t) d t=1$.
(c) $k \rightarrow \infty$ as $T \rightarrow \infty$, which implies $u^{*} \rightarrow 0$ as $T \rightarrow \infty$. For the state we have

$$
x_{2}(T)=-\frac{1}{2 k} \int_{0}^{T} \sin ^{2}(T-t) d t=-\sqrt{\int_{0}^{T} \sin ^{2}(T-t) d t} \rightarrow-\infty
$$

as $T \rightarrow \infty$.
5. a) The problem is a LQ problem on standard form with

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-1 & 2
\end{array}\right), B=\binom{1}{1}, Q=I, R=1
$$

However, note that it is not controllable since

$$
[B, A B]=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right),
$$

thus $z=(1,-1) x$ is uncontrollabe and further note that

$$
\dot{z}=(1,-1) \dot{x}=z,
$$

hence z is unstable. Consider the equivalent formulation in x_{1} and $z=x_{1}-x_{2}$, i.e., with x_{2} replaced by $x_{1}-z$:
$\min \int_{0}^{\infty}\left(x_{1}(t)^{2}+\left(x_{1}(t)-z(t)\right)^{2}+u(t)^{2}\right) d t$ s.t. $\left\{\begin{array}{l}\dot{x}_{1}(t)=x_{1}(t)-z(t)+u(t) \\ \dot{z}(t)=z(t) \\ x_{1}(0)=x_{10}, \\ z(0)=x_{10}-x_{20} .\end{array}\right.$
Note that it is impossible to achieve a finite cost unless $z(0)=$ $x_{10}-x_{20}=0$, which gives $z(t) \equiv 0$ and $x_{1}(t)=x_{2}(t)$ for all t. In this case the problem becomes

$$
\min \int_{0}^{\infty}\left(2 x_{1}(t)^{2}+u(t)^{2}\right) d t \text { s.t. }\left\{\begin{array}{l}
\dot{x}_{1}(t)=x_{1}(t)+u(t) \\
x_{1}(0)=x_{10}
\end{array}\right.
$$

This is a standard LQ problem with infinite time horizon, with $a=1, b=1, r=1, q=2$, thus the Ricatti equation is

$$
0=2 p a+q-b^{2} p^{2} r^{-1}=2 p+1-p^{2}=-(p-1)^{2}+2,
$$

thus the solution is the positive root $p=1+\sqrt{2}$. The optimal feedback is thus

$$
u=-r^{-1} b p x_{1}=-(1+\sqrt{2}) x_{1}
$$

and the optimal cost is

$$
V(x)= \begin{cases}x_{10}^{2}(1+\sqrt{2}) & x_{10}=x_{20} \\ \infty & \text { otherwise }\end{cases}
$$

b) The optimum is unique if it exists, i.e., if $x_{10}=x_{20}$.
c) The closed loop is unstable since there is one unstable uncontrollable mode ($z=x_{1}-x_{2}$).

