Marginal allocation algorithm for generating efficient solutions

Assumptions:

f is integer-convex and strictly decreasing in each variable,

 \boldsymbol{g} is integer-convex and strictly increasing in each variable.

Let $\mathbf{x}^{(0)} = \mathbf{0}$ (which is an efficient solution)

Then generate efficient solutions $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}, \ldots$ "from left to right", i.e., each new generated point has a higher value on $g(\mathbf{x})$ but a lower value on $f(\mathbf{x})$ than the previously generated point.

Let $\mathbf{x}^{(k)}$ denotes the k:th generated efficient solution.

Stop when there is no more efficient solution with $q(\mathbf{x}) \leq q^{\max}$.

Step 0:

Generate a table with n columns as follows. For j = 1, ..., n, fill the j:th column from the top and down with the quotients

 $-\Delta f_j(0)/\Delta g_j(0), \quad -\Delta f_j(1)/\Delta g_j(1), \quad -\Delta f_j(2)/\Delta g_j(2), \cdots$

(A moderate number of quotients will suffice, additional quotients can be calculated as needed.)

Note that the quotients are positive and strictly decreasing in each column. Set k = 0, $\mathbf{x}^{(0)} = (0, \dots, 0)^{\mathsf{T}}$, $g(\mathbf{x}^{(0)}) = g(\mathbf{0})$ and $f(\mathbf{x}^{(0)}) = f(\mathbf{0})$. Let all the quotients in the table be *uncanceled*.

Step 1:

Select the *largest uncanceled* quotient in the table (if there are several equally large, choose one of these arbitrarily). *Cancel* this quotient and let ℓ be the number of the column from which the quotient was canceled.

Step 2:

Let k := k + 1. Then let $x_{\ell}^{(k)} = x_{\ell}^{(k-1)} + 1$ and $x_j^{(k)} = x_j^{(k-1)}$ for all $j \neq \ell$. Calculate $f(\mathbf{x}^{(k)}) = f(\mathbf{x}^{(k-1)}) + \Delta f_{\ell}(x_{\ell}^{(k-1)})$, $g(\mathbf{x}^{(k)}) = g(\mathbf{x}^{(k-1)}) + \Delta g_{\ell}(x_{\ell}^{(k-1)})$. If $g(\mathbf{x}^{(k)}) \ge g^{\max}$, terminate the algorithm. Otherwise, go to Step 1.

 $\mathbf{x}^{(k)}$ differs from the previous solution $\mathbf{x}^{(k-1)}$ in one component. The name of the algorithm stems from the fact that

$$\frac{-\Delta f_j(x_j)}{\Delta g_j(x_j)} = \frac{\text{decrease in } f(\mathbf{x}) \text{ if } x_j \text{ is increased by } 1}{\text{increase in } g(\mathbf{x}) \text{ if } x_j \text{ is increased by } 1}.$$

We increase the x_j which gives marginally the largest decrease in $f(\mathbf{x})$ per increase in $g(\mathbf{x})$.

Marginal allocation algorithm for generating efficient solutions

Let $\mathbf{s}^{(0)} = \mathbf{0}$ (which is an efficient solution)

Note that $\Delta f_j(s_j) = \Delta EBO_j(s_j) = -R_j(s_j)$ and $\Delta g_j(s_j) = \Delta c_j s_j = c_j$, so

$$\frac{-\Delta f_j(s_j)}{\Delta g_j(s_j)} = \frac{R_j(s_j)}{c_j}$$

Step 0:

Generate a table with n columns as follows. For j = 1, ..., n, fill the j:th column from the top and down with the quotients

j = 1	j = 2		j = n
$\frac{R_1(0)}{c_1}$	$\frac{R_2(0)}{c_2}$		$\frac{R_n(0)}{c_n}$
$\frac{R_1(1)}{c_1}$	$\frac{R_2(1)}{c_2}$		$\frac{R_n(1)}{c_n}$
$\frac{R_1(2)}{c_1}$	$\frac{R_2(2)}{c_2}$	•••	$\frac{R_n(2)}{c_n}$
$\frac{R_1(3)}{c_1}$	$\frac{R_2(3)}{c_2}$		$\frac{R_n(3)}{c_n}$
÷	:	:	:

Note that the quotients are positive and strictly decreasing in each column. Let $C^{(0)} = 0$ and $EBO^{(0)} = \sum_{j=1}^{n} \lambda_j T_j$.

Let all the quotients in the table be *uncanceled*.

Step 1:

Select the *largest uncanceled* quotient in the table (if there are several equally large, choose one of these arbitrarily). *Cancel* this quotient and let ℓ be the number of the column from which the quotient was canceled.

Step 2: Let k := k + 1. Then let $s_{\ell}^{(k)} = s_{\ell}^{(k-1)} + 1$ and $s_{j}^{(k)} = s_{j}^{(k-1)}$ for all $j \neq \ell$. Calculate $C^{(k)} = C^{(k-1)} + c_{\ell}$ and $EBO^{(k)} = EBO^{(k-1)} - R_{\ell}(s_{\ell}^{(k-1)})$. If $C^{(k)} \geq C^{\max}$, terminate the algorithm. Otherwise, go to Step 1.