Marginal allocation algorithm for generating efficient solutions

Assumptions:

f is integer-convex and strictly decreasing in each variable, g is integer-convex and strictly increasing in each variable.
Let $\mathbf{x}^{(0)}=\mathbf{0}$ (which is an efficient solution)
Then generate efficient solutions $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}, \ldots$ "from left to right", i.e., each new generated point has a higher value on $g(\mathbf{x})$ but a lower value on $f(\mathbf{x})$ than the previously generated point.
Let $\mathbf{x}^{(k)}$ denotes the k :th generated efficient solution.
Stop when there is no more efficient solution with $g(\mathbf{x}) \leq g^{\max }$.

Step 0:

Generate a table with n columns as follows. For $j=1, \ldots, n$, fill the j :th column from the top and down with the quotients

$$
-\Delta f_{j}(0) / \Delta g_{j}(0), \quad-\Delta f_{j}(1) / \Delta g_{j}(1), \quad-\Delta f_{j}(2) / \Delta g_{j}(2), \cdots
$$

(A moderate number of quotients will suffice, additional quotients can be calculated as needed.)
Note that the quotients are positive and strictly decreasing in each column.
Set $k=0, \mathbf{x}^{(0)}=(0, \ldots, 0)^{\top}, g\left(\mathbf{x}^{(0)}\right)=g(\mathbf{0})$ and $f\left(\mathbf{x}^{(0)}\right)=f(\mathbf{0})$.
Let all the quotients in the table be uncanceled.

Step 1:

Select the largest uncanceled quotient in the table (if there are several equally large, choose one of these arbitrarily). Cancel this quotient and let ℓ be the number of the column from which the quotient was canceled.

Step 2:

Let $k:=k+1$. Then let $x_{\ell}^{(k)}=x_{\ell}^{(k-1)}+1$ and $x_{j}^{(k)}=x_{j}^{(k-1)}$ for all $j \neq \ell$. Calculate $f\left(\mathbf{x}^{(k)}\right)=f\left(\mathbf{x}^{(k-1)}\right)+\Delta f_{\ell}\left(x_{\ell}^{(k-1)}\right), g\left(\mathbf{x}^{(k)}\right)=g\left(\mathbf{x}^{(k-1)}\right)+\Delta g_{\ell}\left(x_{\ell}^{(k-1)}\right)$. If $g\left(\mathbf{x}^{(k)}\right) \geq g^{\max }$, terminate the algorithm. Otherwise, go to Step 1 .
$\mathbf{x}^{(k)}$ differs from the previous solution $\mathbf{x}^{(k-1)}$ in one component.
The name of the algorithm stems from the fact that

$$
\frac{-\Delta f_{j}\left(x_{j}\right)}{\Delta g_{j}\left(x_{j}\right)}=\frac{\text { decrease in } f(\mathbf{x}) \text { if } x_{j} \text { is increased by } 1}{\text { increase in } g(\mathbf{x}) \text { if } x_{j} \text { is increased by } 1} .
$$

We increase the x_{j} which gives marginally the largest decrease in $f(\mathbf{x})$ per increase in $g(\mathbf{x})$.

Marginal allocation algorithm for generating efficient solutions

Let $\mathbf{s}^{(0)}=\mathbf{0}$ (which is an efficient solution)
Note that $\Delta f_{j}\left(s_{j}\right)=\Delta E B O_{j}\left(s_{j}\right)=-R_{j}\left(s_{j}\right)$ and $\Delta g_{j}\left(s_{j}\right)=\Delta c_{j} s_{j}=c_{j}$, so

$$
\frac{-\Delta f_{j}\left(s_{j}\right)}{\Delta g_{j}\left(s_{j}\right)}=\frac{R_{j}\left(s_{j}\right)}{c_{j}}
$$

Step 0:

Generate a table with n columns as follows. For $j=1, \ldots, n$, fill the j :th column from the top and down with the quotients

$j=1$	$j=2$	\ldots	$j=n$
$\frac{R_{1}(0)}{c_{1}}$	$\frac{R_{2}(0)}{c_{2}}$	\ldots	$\frac{R_{n}(0)}{c_{n}}$
$\frac{R_{1}(1)}{c_{1}}$	$\frac{R_{2}(1)}{c_{2}}$	\ldots	$\frac{R_{n}(1)}{c_{n}}$
$\frac{R_{1}(2)}{c_{1}}$	$\frac{R_{2}(2)}{c_{2}}$	\ldots	$\frac{R_{n}(2)}{c_{n}}$
$\frac{R_{1}(3)}{c_{1}}$	$\frac{R_{2}(3)}{c_{2}}$	\ldots	$\frac{R_{n}(3)}{c_{n}}$
\vdots	\vdots	\vdots	\vdots

Note that the quotients are positive and strictly decreasing in each column.
Let $C^{(0)}=0$ and $E B O^{(0)}=\sum_{j=1}^{n} \lambda_{j} T_{j}$.
Let all the quotients in the table be uncanceled.

Step 1:

Select the largest uncanceled quotient in the table (if there are several equally large, choose one of these arbitrarily). Cancel this quotient and let ℓ be the number of the column from which the quotient was canceled.

Step 2:

Let $k:=k+1$. Then let $s_{\ell}^{(k)}=s_{\ell}^{(k-1)}+1$ and $s_{j}^{(k)}=s_{j}^{(k-1)}$ for all $j \neq \ell$.
Calculate $C^{(k)}=C^{(k-1)}+c_{\ell}$ and $E B O^{(k)}=E B O^{(k-1)}-R_{\ell}\left(s_{\ell}^{(k-1)}\right)$. If $C^{(k)} \geq C^{\max }$, terminate the algorithm. Otherwise, go to Step 1.

