
Marginal allocation algorithm for generating efficient solutions

Assumptions:

f is integer-convex and strictly decreasing in each variable,
g is integer-convex and strictly increasing in each variable.

Let x(0) = 0 (which is an efficient solution)
Then generate efficient solutions x(1),x(2),x(3), . . . “from left to right”, i.e.,
each new generated point has a higher value on g(x) but a lower value on
f(x) than the previously generated point.
Let x(k) denotes the k:th generated efficient solution.
Stop when there is no more efficient solution with g(x) ≤ gmax.

Step 0:

Generate a table with n columns as follows. For j = 1, . . . , n, fill the j:th
column from the top and down with the quotients

−∆fj(0)/∆gj(0), −∆fj(1)/∆gj(1), −∆fj(2)/∆gj(2), · · ·

(A moderate number of quotients will suffice, additional quotients can be
calculated as needed.)
Note that the quotients are positive and strictly decreasing in each column.
Set k = 0, x(0) = (0, . . . , 0)T, g(x(0)) = g(0) and f(x(0)) = f(0).
Let all the quotients in the table be uncanceled.

Step 1:

Select the largest uncanceled quotient in the table (if there are several equally
large, choose one of these arbitrarily). Cancel this quotient and let ` be the
number of the column from which the quotient was canceled.

Step 2:

Let k := k + 1. Then let x
(k)
` = x

(k−1)
` + 1 and x

(k)
j = x

(k−1)
j for all j 6= `.

Calculate f(x(k)) = f(x(k−1))+∆f`(x
(k−1)
` ) , g(x(k)) = g(x(k−1))+∆g`(x

(k−1)
` ).

If g(x(k)) ≥ gmax, terminate the algorithm. Otherwise, go to Step 1.

x(k) differs from the previous solution x(k−1) in one component.
The name of the algorithm stems from the fact that

−∆fj(xj)

∆gj(xj)
=

decrease in f(x) if xj is increased by 1

increase in g(x) if xj is increased by 1
.

We increase the xj which gives marginally the largest decrease in f(x) per
increase in g(x).

1



Marginal allocation algorithm for generating efficient solutions

Let s(0) = 0 (which is an efficient solution)
Note that ∆fj(sj) = ∆EBOj(sj) = −Rj(sj) and

∆gj(sj) = ∆cjsj = cj , so

−∆fj(sj)

∆gj(sj)
=

Rj(sj)

cj

Step 0:

Generate a table with n columns as follows. For j = 1, . . . , n, fill the j:th
column from the top and down with the quotients

j = 1 j = 2 · · · j = n
R1(0)

c1

R2(0)

c2
· · ·

Rn(0)

cn

R1(1)

c1

R2(1)

c2
· · ·

Rn(1)

cn

R1(2)

c1

R2(2)

c2
· · ·

Rn(2)

cn

R1(3)

c1

R2(3)

c2
· · ·

Rn(3)

cn

...
...

...
...

Note that the quotients are positive and strictly decreasing in each column.
Let C(0) = 0 and EBO(0) =

∑n
j=1 λjTj .

Let all the quotients in the table be uncanceled.
Step 1:

Select the largest uncanceled quotient in the table (if there are several equally
large, choose one of these arbitrarily). Cancel this quotient and let ` be the
number of the column from which the quotient was canceled.

Step 2:

Let k := k + 1. Then let s
(k)
` = s

(k−1)
` + 1 and s

(k)
j = s

(k−1)
j for all j 6= `.

Calculate C(k) = C(k−1) + c` and EBO(k) = EBO(k−1) −R`(s
(k−1)
` ).

If C(k) ≥ Cmax, terminate the algorithm. Otherwise, go to Step 1.

2


