
The Satellite - A marginal allocation approach

Krister Svanberg and Per Enqvist

Optimization and Systems Theory,

KTH, Stockholm, Sweden.

{krille},{penqvist}@math.kth.se

1 Minimizing an integer-convex function of a single variable

Let N denote the set of natural numbers (non-negative integers), N = {0, 1, 2, . . . , },
and let IR denote the set of real numbers.

Further, let f be a given function from N to IR, and consider the optimization problem

minimize f(x) subject to x ∈ N . (1)

Def: The number x̂ ∈ N is an optimal solution to (1) if f(x̂) ≤ f(x) for all x ∈ N .
In this case, the optimal value of the problem (1) is given by f(x̂).

For a completely general function f , (1) might be an impossible problem to solve (since there is
an infinite number of numbers to compare.) But if f has certain properties, (1) could be solvable,
perhaps even easily solvable. One such property will be discussed next.

For each number x ∈ N , let

∆f(x) = f(x+1)− f(x). (2)

Def: The function f from N to IR is integer-convex if ∆f(x+1) ≥ ∆f(x) for all x ∈ N .

Applying the ∆ operator twice on f we have

∆2f(x) = ∆f(x+1)−∆f(x) = f(x+ 2)− 2f(x+ 1) + f(x). (3)

Alternative definition

Def: The function f from N to IR is integer-convex if ∆2f(x) ≥ 0 for all x ∈ N .

The following is a useful result.

Prop 1.1: If f : IR+ → IR is a convex function on IR+, then f|N : N → IR, defined by f|N (n) = f(n)
for all n ∈ N , is integer-convex.

Proof: Take x ∈ IR+ arbitrarily, then from the convexity of f it follows that

f(x) = f(
1

2
(x+ 1) +

1

2
(x− 1)) ≤

1

2
f(x+ 1) +

1

2
f(x− 1),

1

so
0 ≤ f(x+ 1)− 2f(x) + f(x− 1) = (f(x+ 1)− f(x))− (f(x)− f(x− 1))

Now, if x = n ∈ N , then ∆f|N (n)−∆f|N (n− 1) ≥ 0, which shows that f|N is integer-convex.

Prop 1.2: Assume that f is an integer-convex function from N to IR.
Then the number x̂ is an optimal solution to problem (1) if and only if
the following inequalities are satisfied:

∆f(x̂−1) ≤ 0 ≤ ∆f(x̂) if x̂ > 0 ,

0 ≤ ∆f(0) if x̂ = 0 .
(4)

Proof:

If x̂ > 0 and ∆f(x̂−1) > 0 then f(x̂−1) < f(x̂) and x̂ is not optimal.
If x̂ ≥ 0 and ∆f(x̂) < 0 then f(x̂+1) < f(x̂) and x̂ is not optimal.
If x̂ = 0 and ∆f(0) ≥ 0 then, since f is integer-convex, ∆f(x) ≥ 0 for all x ≥ 0.
This implies that f(0) ≤ f(1) ≤ f(2) ≤ . . . , so that x̂ = 0 is optimal.
If x̂ > 0, ∆f(x̂) ≥ 0 and ∆f(x̂−1) ≤ 0 then, since f is integer-convex,
∆f(x) ≥ 0 for all x ≥ x̂ and ∆f(x) ≤ 0 for all x ≤ x̂− 1. This implies that
f(x̂) ≤ f(x̂+1) ≤ f(x̂+2) ≤ . . . , and f(x̂) ≤ f(x̂−1) ≤ . . . ≤ f(0),
so that x̂ is optimal.

These optimality criteria can obviously be used for solving problem (1):
If ∆f(x) < 0 then x is too small to be optimal, while if ∆f(x−1) > 0 then x is too large.

2 Minimizing integer-convex separable functions of several vari-

ables

Let N n denote the set of vectors x = (x1, . . . , xn)
T with natural numbers as components.

Further, let f be a given function from N n to IR, and consider the optimization problem

minimize f(x) subject to x ∈ N n . (5)

Def: The vector x̂ ∈ N n is an optimal solution to (5) if f(x̂) ≤ f(x) for all x ∈ N n.
In this case, the optimal value of the problem (5) is given by f(x̂).

Def: The function f from N n to IR is separable if f can be written

f(x) =
n∑

j=1

fj(xj), (6)

where, for each j = 1, . . . , n, fj is a function from N to IR.

For separable functions, there is a natural definition of integer-convexity:

Def: The separable function f in (6) is integer-convex if each fj is integer-convex.

Prop 2.1: Assume that f is an integer-convex separable function from N n to IR.
Then the vector x̂ is an optimal solution to problem (5) if and only if

2

the following inequalities are satisfied for each j = 1, . . . , n:

∆fj(x̂j−1) ≤ 0 ≤ ∆fj(x̂j) if x̂j > 0 ,

0 ≤ ∆fj(0) if x̂j = 0 .
(7)

Proof: The statement follows from Prop 1.1, together with the observation that the sum f(x) =
∑

j fj(xj) is minimized if and only if each term fj(xj) is minimized (since there is no coupling
between the variables).

3 Efficient points for two integer-convex separable functions

Let f and g be two given integer-convex separable functions from N n to IR:

f(x) =
n∑

j=1

fj(xj) and g(x) =
n∑

j=1

gj(xj). (8)

Further assume that both f(x) and g(x) stands for quantities that we would like to be small, but
that each fj(xj) is strictly decreasing in xj while each gj(xj) is strictly increasing in xj . This causes
a conflict: Large values on the variables xj will tend to make f(x) small, which is desirable, but
g(x) large, which is undesirable. Small values on the variables xj will tend to make g(x) small,
which is desirable, but f(x) large, which is undesirable. This section deals with how to compromise
between these conflicting goals.

To summarize the assumptions:

∆fj(xj) ≤ ∆fj(xj+1) < 0 for all j and all xj ∈ N ,

0 < ∆gj(xj) ≤ ∆gj(xj+1) for all j and all xj ∈ N .
(9)

Let gmax be a given upper bound on the acceptable values of g(x): Points x with g(x) > gmax are
assumed to be unacceptable (e.g. too expensive). Further let

X = {x ∈ N n | g(x) ≤ gmax}. (10)

Since each function gj is strictly increasing and integer-convex, the set X contains a finite number
of vectors x, but this finite number may in practical applications be extremely large.

Def: The vector x̂ ∈ X is an efficient solution corresponding to the above setting
if there are constants α > 0 and β > 0 such that x̂ is an optimal solution
to the following optimization problem in x :

minimize α g(x) + βf(x) subject to x ∈ X . (11)

Next, we will give a natural geometric interpretation of the efficient solutions defined above.

Let
M = { (g(x), f(x)) | x ∈ X} ⊂ IR 2. (12)

This set M contains a finite (but possibly extremely large) number of points in IR 2. To get a
picture of M , we may imagine that the points in M are plotted in a coordinate system where the
horizontal axis shows g(x) and the vertical axis shows f(x).

3

M

f_1(x)

f_2(x)

The convex hull of M is defined as the smallest convex set in IR 2 which contains M .
Geometrically, the convex hull of M is what you get if you “stretch a rope” around M .

The efficient curve for the current setting is the piecewise linear curve that constitutes the “south-
western boundary” of the convex hull of M . Points (g(x), f(x)) ∈ M which lie on this efficient
curve are called efficient points, and the corresponding vectors x are in fact the efficient solutions

defined above. Here is an argument to motivate this last statement:

From a two-dimensional figure where the points of M are plotted and the convex hull of M is
drawn, it follows that a point (ξ̂, η̂) = (g(x̂), f(x̂)) ∈ M belongs to the “southwestern boundary”
of the convex hull of M if and only if there are constants α > 0 and β > 0 such that (ξ̂, η̂) is an
optimal solution to the following optimization problem in ξ and η:

minimize α ξ + β η subject to (ξ, η) ∈ M. (13)

But this problem (13) is equivalent to the the above problem (11) in x.

M

f_1(x)

f_2(x)

xhat

Typically, we are interested in determining the efficient curve for a given situation, with given
functions f and g. It turns out that even if the number of points in M is extremely large, it is
surprisingly easy to determine the efficient curve! We will describe below how this is done, but first
some preparatory results.

4

Prop 3.1: The vector x̂ ∈ X minimizes αg(x) + βf(x) subject to x ∈ X if and only if
the following conditions are satisfied for each j = 1, . . . , n:

−∆fj(x̂j)

∆gj(x̂j)
≤

α

β
≤

−∆fj(x̂j−1)

∆gj(x̂j−1)
if x̂j > 0 , (14)

−∆fj(0)

∆gj(0)
≤

α

β
if x̂j = 0 , (15)

Proof: Just replace f(x) by α g(x) + βf(x) in Prop 2.2

From this proposition, together with the above definition of an efficient solution, we get the following
criteria for deciding whether a vector x̂ is an efficient solution or not:

Prop 3.2: x̂ ∈ X is an efficient solution if and only if there are constants α > 0 and β > 0
such that the conditions (14)–(15) are satisfied for each j = 1, . . . , n.

The following result shows that each efficient solution is in fact an optimal solution to two particular
optimization problems.

Prop 3.3: Assume that x̂ ∈ X is an efficient solution, and let ĝ = g(x̂) and f̂ = f(x̂).
Then x̂ is an optimal solution to both the following optimization problems:

minimize f(x) subject to g(x) ≤ ĝ , x ∈ X. (16)

minimize g(x) subject to f(x) ≤ f̂ , x ∈ X. (17)

Proof: If x̂ is an efficient solution then there are constants α > 0 and β > 0 such that

αg(x̂) + βf(x̂) ≤ αg(x) + βf(x), for all x ∈ X. (18)

First, take an arbitrary x ∈ X such that g(x) ≤ ĝ. Then, according to (18), it holds that

f(x̂)− f(x) ≤ (α/β)(g(x) − g(x̂)) = (α/β)(g(x) − ĝ) ≤ 0, (19)

which implies that x̂ is an optimal solution to (16).

Next, take an arbitrary x ∈ X such that f(x) ≤ f̂ . Then, according to (18), it holds that

g(x̂)− g(x) ≤ (β/α)(f(x) − f(x̂)) = (β/α)(f(x) − f̂) ≤ 0, (20)

which implies that x̂ is an optimal solution to (17).

4 Marginal allocation algorithm for generating efficient solutions

We will now describe a surprisingly simple algorithm for determining the efficient curve described
above, but first we repeat the assumptions that f is integer-convex and strictly decreasing in each
variable, while g is integer-convex and strictly increasing in each variable.

The algorithm start from x(0) = 0 (which is an efficient solution) and generates efficient solutions
x(1),x(2),x(3), . . . “from left to right”, which means that each new generated point has a higher

5

value on g(x) but a lower value on f(x) than the previously generated point.
Throughout the algorithm x(k) denotes the k:th generated efficient solution.
The algorithm terminates when there is no longer any efficient solution with g(x) ≤ gmax.

Step 0:

Generate a table with n columns as follows. For j = 1, . . . , n, fill the j:th column from the top and
down with the quotients −∆fj(0)/∆gj(0), −∆fj(1)/∆gj(1), −∆fj(2)/∆gj(2), etc...
(A moderate number of quotients will suffice, additional quotients can be calculated as needed.)
Note that the quotients are positive and strictly decreasing in each column.
Set k = 0, x(0) = (0, . . . , 0)T, g(x(0)) = g(0) and f(x(0)) = f(0).
Let all the quotients in the table be uncanceled.

Step 1:

Select the largest uncanceled quotient in the table (if there are several equally large, choose one
of these arbitrarily). Cancel this quotient and let ` be the number of the column from which the
quotient was canceled.

Step 2:

Let k := k + 1. Then let x
(k)
` = x

(k−1)
` + 1 and x

(k)
j = x

(k−1)
j for all j 6= `.

Further, calculate f(x(k)) = f(x(k−1)) + ∆f`(x
(k−1)
`) and g(x(k)) = g(x(k−1)) + ∆g`(x

(k−1)
`).

If g(x(k)) ≥ gmax, terminate the algorithm. Otherwise, go to Step 1.

Note that each generated solution x(k) differs from the previously generated solution x(k−1) in just
one component. The name of the algorithm stems from the fact that

−∆fj(xj)

∆gj(xj)
=

decrease in f(x) if xj is increased by 1

increase in g(x) if xj is increased by 1
.

Hence, in each step of the algorithm, we increase the xj which gives marginally the largest decrease
in f(x) per increase in g(x).

Prop 4.1: Each generated solution x(k) is an efficient solution.

Proof: Consider a given generated solution x(k). Choose α > 0 and β > 0 such that α/β = the
quotient that was canceled in Step 1 immediately before x(k) was generated in Step 2. Then all
canceled quotients are ≥ α/β, while all uncanceled quotients are ≤ α/β. But then x(k) and α/β
satisfy conditions (14)–(15) for each j = 1, . . . , n, which implies that x(k) is an efficient solution.

Prop 4.2: Assume that all quotients −∆fj(xj)/∆gj(xj) in the original table are different.
Then the algorithm generates all efficient solutions which satisfy g(x) ≤ gmax.

Proof: Assume that x̂ is an efficient solution. Then the conditions (14)–(15) are satisfied for some
α/β. But if all quotients are different, then α/β can be perturbed such that all inequalities in
(14)–(15) becomes strict inequalities, so that, for each j = 1, . . . , n,

−∆fj(xj)

∆gj(xj)
<

α

β
if xj ≥ x̂j , and

−∆fj(xj)

∆gj(xj)
>

α

β
if xj < x̂j . (21)

These conditions determine x̂ uniquely. However, this solution will actually be generated by the
algorithm in the stage where the latest canceled quotient is > α/β, while the largest quotient that
has not yet been canceled is < α/β.

6

5 The satellite problem

We will consider a satellite that is going to be launched into space and we will consider the reliability
of a system that will be in operation for a time period of five years. The system relies on five
different subprocesses, and each subprocess needs to be operative in order for the whole system
to work properly. Each subprocess is dependent on a certain component on the satellite to work.
These components fail with some probability, and to increase the reliability of the satellite, the
components can be duplicated. The downside with duplicating components is the extra weight this
puts on the satellite.

The weight wk for each of the components corresponding to subprocess k are given by

w =
[

w1 w2 w3 w4 w5

]

=
[

1 2 1 2 3
]

. (22)

The reliability of the process is increased by adding redundancy in terms of adding more com-
ponents, and we would like to know how one optimally should select these extra components in
order to maximize the reliability. In particular we will consider in which order you should add
the components if you add them one by one and get a feeling for the relation between increased
reliability and added weight.

We will study two different approaches where the redundancy imposed to the system is modelled
in different ways. These corresponds to different assumptions on if the components fail while being
active or passive.

5.1 The Active Redundance Problem

In the first case we consider active redundance. The component of type k is duplicated in a total
of xk number of components.

We assume that components of type k fail according to some distribution so that the failure times
are independent and exponentially distributed with intensity λk.

7

This means that each of the components fail with some probability pk = 1 − eλkT , where T = 5
years is the mission time. In this example we assume that the probabilities are given by

p =
[

p1 p2 p3 p4 p5
]

=
[

0.2 0.1 0.3 0.15 0.05
]

. (23)

The physical interpretation is that all components of the same type run the same risk of failing,
no matter if it is used or not, and this failure risk would typically depend on stress caused at the
launch or radiation in the space environment.

Using the independence assumption, the probability that subprocess k is not working is then the
probability that none of the xk components of type k are working, i.e., pxk

k . The probability that
subprocess k is working is then 1− pxk

k , and the probability that the whole process is working is

Pworking(x) =
5∏

k=1

(
1− pxk

k

)
. (24)

We would like to maximize this function using the theory explained above, but this function is not
a separable function. Taking the logarithm of Pworking(x) gives a separable function, and to get a
minimization problem we change the sign and consider the function:

f(x) = − logPworking(x) =
5∑

k=1

− log
(
1− pxk

k

)
=

5∑

k=1

fk(xk), (25)

where fk(xk) = − log(1− pxk

k).

Is fk(xk) an integer-convex function ?

We use Proposition 1.1. To obtain easier derivatives, let pk = e−ak .

Then if F (x) = − log(1− e−ax), it is easy to see that

F ′(x) = −
ae−ax

1− e−ax
, F ′′(x) =

a2e−2ax

(1− e−ax)2
. (26)

The second derivative F ′′(x) is strictly positive and therefore the function F (x) is convex and from
Proposition 1.1 it follows that fk(xk) is integer-convex for each k, hence f is integer-convex.

It is also easy to see that the fk are strictly decreasing.

Define also g(x)

g(x) =
k∑

j=0

wjxj =
k∑

j=0

gj(xj), (27)

which determines the weight of all the components that are placed on the satellite. Since ∆gk(xk) =
wk > 0, it is trivially a strictly increasing and integer-convex seperable function.

Now we would like to solve the problem using the marginal allocation algorithm.

First we need to compute the functions fk(xk) for a number of plausible values, this gives us the
following table

8

k f1(k) f2(k) f3(k) f4(k) f5(k)
1 0.223143551314210 0.105360515657826 0.356674943938732 0.162518929497775 0.051293294387551
2 0.040821994520255 0.010050335853501 0.094310679471241 0.022756987122616 0.002503130218118
3 0.008032171697264 0.001000500333584 0.027371196796132 0.003380708159478 0.000125007813151
4 0.001601281366974 0.000100005000333 0.008132983230189 0.000506378187796 0.000006250019531
5 0.000320051210925 0.000010000050000 0.002432957241703 0.000075940383398 0.000000312500049
6 0.000064002048087 0.000001000000500 0.000729265849711 0.000011390689874 0.000000015625000

Then it is easy to determine the marginal costs

k −∆f1(k)
w1

−∆f2(k)
w2

−∆f3(k)
w3

−∆f4(k)
w4

−∆f5(k)
w5

1 0.182321556793955 0.047655089902162 0.262364264467491 0.069880971187579 0.016263388056477
2 0.032789822822991 0.004524917759959 0.066939482675109 0.009688139481569 0.000792707468322
3 0.006430890330290 0.000450247666625 0.019238213565943 0.001437164985841 0.000039585931207
4 0.001281230156049 0.000045002475167 0.005700025988486 0.000215218902199 0.000001979173161
5 0.000256049162838 0.000004500024750 0.001703691391992 0.000032274846762 0.000000098958350

We can order the elements in this matrix

k −∆f1(k)
w1

−∆f2(k)
w2

−∆f3(k)
w3

−∆f4(k)
w4

−∆f5(k)
w5

1 2 5 1 3 8

2 6 0.004524917759959 4 9 0.000792707468322

3 10 0.000450247666625 7 0.001437164985841 0.000039585931207
4 0.001281230156049 0.000045002475167 0.005700025988486 0.000215218902199 0.000001979173161
5 0.000256049162838 0.000004500024750 0.001703691391992 0.000032274846762 0.000000098958350

The marginal allocation algorithm starts with

x(0) =
[

x1 x2 x3 x4 x5
]

=
[

1 1 1 1 1
]

, (28)

which corresponds to a weight of 9 units and a probability of the system to be operative during
the whole mission time of 40.7%.

By adding the components, one by one, in the order determined by the marginal allocation algo-
rithm, gives the following values

n x
(n)
1 x

(n)
2 x

(n)
3 x

(n)
4 x

(n)
5 P (x(n)) w · x(n)

0 1 1 1 1 1 0.4069 9
1 1 1 2 1 1 0.5291 10
2 2 1 2 1 1 0.6349 11
3 2 1 2 2 1 0.7301 13
4 2 1 3 2 1 0.7807 14
5 2 2 3 2 1 0.8587 16
6 3 2 3 2 1 0.8874 17
7 3 2 4 2 1 0.9046 18
8 3 2 4 2 2 0.9498 21
9 3 2 4 3 2 0.9684 23
10 4 2 4 3 2 0.9747 24

These values determine the efficient curve depicted in blue in the figure below. For illustration all

9

different values of x with components between 1 and 5 have been determined and the corresponding
weights and probabilities are depicted with red dots.

5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Total weight

−
lo

g(
P

ro
ba

bi
lit

y
of

 s
ys

te
m

 w
or

ki
ng

)

5.2 The Passive Redundance Problem

In the second case we consider passive redundance. The component of type k is duplicated in a
total of xk number of components.

We assume that the active component of type k fail according to some distribution so that the
failure times are independent and exponentially distributed with intensity λk.

This means that the components fail one by one, each with some exponential life length with
intensity λk. The number of failures Y in a time interval of length T , when the time between
failures is exponentially distrubuted with parameter λ, has a Poisson distribution with parameter
λT , i.e. Y has the probability function

P (Y = k) =
(λT)k

k!
e−λT , k = 0, 1, · · · . (29)

Here, T = 5 years is the mission time.

The physical interpretation is now that components of the same type run the risk of failing only if
it is in use, and this failure risk would typically depend on wear and tear.

The probability that subprocess k works during the whole mission time T , given that there are xk
available components of type k on the satellite is then

Psubsystem k working(xk) =
xk−1
∑

k=0

(λkT)
k

k!
e−λkT . (30)

In particular, Psubsystem k working(1) = e−λkT = 1 − pk is the same probability as for the active
redundance problem. If we have only one component of a certain type the two approaches are
equal. We assume that the λk are such that the probabilities pk are given as before by

p =
[

p1 p2 p3 p4 p5
]

=
[

0.2 0.1 0.3 0.15 0.05
]

. (31)

10

The probability that the whole process is working is

Pworking(x) =
5∏

k=1

Psubsystem k working(xk) (32)

As before, this function is not a separable function. Again, taking the logarithm of Pworking(x)
gives a separable function, and to get a minimization problem we change the sign and consider the
function:

f(x) = − logPworking(x) =
5∑

k=1

λkT − log

(

1 + λkT + · · · +
(λkT)

xk−1

(xk − 1)!

)

=
5∑

k=1

fk(xk), (33)

where fk(xk) = λkT − log
(

1 + λkT + · · · + (λkT)xk−1

(xk−1)!

)

.

Is fk(xk) an integer-convex function ?

This time it is not convenient to use Proposition 1.1, so we use the definition instead.

Denote Sk(x) = 1 + λkT + · · ·+ (λkT)x−1

(x−1)! , then

∆fk(xk) = log Sk(xk − 1)− log Sk(xk) (34)

and

∆2fk(xk) = − logSk(xk − 1) + 2 log Sk(xk)− logSk(xk + 1) = log
Sk(xk)

2

Sk(xk − 1)Sk(xk + 1)

which is larger than zero iff Sk(xk − 1)Sk(xk + 1) ≤ S2
k(xk), i.e.

S2
k(xk)−

(

Sk(xk)−
(λkT)

xk−1

(xk − 1)!

)

︸ ︷︷ ︸

Sk(xk−1)

(

Sk(xk) +
(λkT)

xk

xk!

)

︸ ︷︷ ︸

Sk(xk+1)

≥ 0

which reduces to

Sk(xk)

(

(λkT)
xk−1

(xk − 1)!

)(

1−
λkT

xk

)

+
(λkT)

2xk−1

(xk − 1)!xk!
≥ 0.

This clearly holds if λkT
xk

≤ 1. For the data in our case, it holds that λkT < 1, and therefore fk(xk)
is integer-convex for each k, hence f(x) is integer-convex. From (34) it follows that fk is a strictly
decreasing function.

Define also g(x) as in (27).

Now we would like to solve the problem to minimize αf(x) + βg(x) using the marginal allocation
algorithm.

First we need to compute the functions fk(xk) for a number of plausible values, this gives us the
following table

11

k f1(k) f2(k) f3(k) f4(k) f5(k)
1 0.223143551314210 0.105360515657826 0.356674943938732 0.162518929497775 0.051293294387551
2 0.021719325116041 0.005188975384976 0.051638131987610 0.011929787712028 0.001272179208748
3 0.001569171657521 0.000180174921625 0.005818478333388 0.000633839721685 0.000021644592734
4 0.000086478653364 0.000004720195748 0.000507948531201 0.000025532869481 0.000000276837778
5 0.000003830012198 0.000000099111735 0.000035781922905 0.000000825345840 0.000000002835107
6 0.000000141669160 0.000000001736006 0.000002108440661 0.000000022268025 0.000000000024207

Then it is easy to determine the marginal costs

k −∆f1(k)
w1

−∆f2(k)
w2

−∆f3(k)
w3

−∆f4(k)
w4

−∆f5(k)
w5

1 0.201424226198169 0.050085770136425 0.305036811951123 0.075294570892873 0.016673705059601
2 0.020150153458520 0.002504400231675 0.045819653654222 0.005647973995172 0.000416844872005
3 0.001482693004157 0.000087727362939 0.005310529802187 0.000304153426102 0.000007122584985
4 0.000082648641166 0.000002310542006 0.000472166608296 0.000012353761820 0.000000091334224
5 0.000003688343038 0.000000048687865 0.000033673482244 0.000000401538908 0.000000000936967

We can order the elements in this matrix

k −∆f1(k)
w1

−∆f2(k)
w2

−∆f3(k)
w3

−∆f4(k)
w4

−∆f5(k)
w5

1 2 4 1 3 7

2 6 10 5 8 0.000416844872005

3 0.001482693004157 0.000087727362939 9 0.000304153426102 0.000007122584985
4 0.000082648641166 0.000002310542006 0.000472166608296 0.000012353761820 0.000000091334224
5 0.000003688343038 0.000000048687865 0.000033673482244 0.000000401538908 0.000000000936967

The marginal allocation algorithm starts as before with

x(0) =
[

x1 x2 x3 x4 x5
]

=
[

1 1 1 1 1
]

, (35)

By adding the components, one by one, in the order determined by the marginal allocation algo-
rithm, gives the following values

n x
(n)
1 x

(n)
2 x

(n)
3 x

(n)
4 x

(n)
5 P (x(n)) w · x(n)

0 1 1 1 1 1 0.4069 9
1 1 1 2 1 1 0.5521 10
2 2 1 2 1 1 0.6754 11
3 2 1 2 2 1 0.7851 13
4 2 2 2 2 1 0.8578 15
5 2 2 3 2 1 0.9085 16
6 3 2 3 2 1 0.9270 17
7 3 2 3 2 2 0.9746 20
8 3 2 3 3 2 0.9856 22
9 3 2 4 3 2 0.9909 23
10 3 3 4 3 2 0.9958 25

These values determine the efficient curve depicted in blue in the figure below. For illustration all
different values of x with components between 1 and 5 have been determined and the corresponding
weights and probabilities are depicted with red dots.

12

5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Total weight

−
lo

g(
P

ro
ba

bi
lit

y
of

 s
ys

te
m

 w
or

ki
ng

)

13

