On marginal allocation

Krister Svanberg
Optimization and Systems Theory, KTH, Stockholm, Sweden. krille@math.kth.se

1. Minimizing an integer-convex function of a single variable

Let \mathcal{N} denote the set of natural numbers (non-negative integers), $\mathcal{N}=\{0,1,2, \ldots$,$\} ,$ and let \mathbb{R} denote the set of real numbers.

Further, let f be a given function from \mathcal{N} to \mathbb{R}, and consider the optimization problem

$$
\begin{equation*}
\text { minimize } f(x) \text { subject to } x \in \mathcal{N} \text {. } \tag{1.1}
\end{equation*}
$$

Def: The number $\hat{x} \in \mathcal{N}$ is an optimal solution to (1.1) if $f(\hat{x}) \leq f(x)$ for all $x \in \mathcal{N}$.
In this case, the optimal value of the problem (1.1) is given by $f(\hat{x})$.
For a completely general function f, (1.1) might be an impossible problem to solve (since there is an infinite number of numbers to compare.) But if f has certain properties, (1.1) could be solvable, perhaps even easily solvable. One such property will be discussed next.
For each number $x \in \mathcal{N}$, let

$$
\begin{equation*}
\Delta f(x)=f(x+1)-f(x) . \tag{1.2}
\end{equation*}
$$

Def: The function f from \mathcal{N} to \mathbb{R} is integer-convex if $\Delta f(x+1) \geq \Delta f(x)$ for all $x \in \mathcal{N}$.
Prop 1.1: Assume that f is an integer-convex function from \mathcal{N} to \mathbb{R}.
Then the number \hat{x} is an optimal solution to problem (1.1) if and only if the following inequalities are satisfied:

$$
\begin{align*}
& \Delta f(\hat{x}-1) \leq 0 \leq \Delta f(\hat{x}) \quad \text { if } \quad \hat{x}>0 \tag{1.3}\\
& 0 \leq \Delta f(0) \quad \text { if } \hat{x}=0 .
\end{align*}
$$

Proof:

If $\hat{x}>0$ and $\Delta f(\hat{x}-1)>0$ then $f(\hat{x}-1)<f(\hat{x})$ and \hat{x} is not optimal.
If $\hat{x} \geq 0$ and $\Delta f(\hat{x})<0$ then $f(\hat{x}+1)<f(\hat{x})$ and \hat{x} is not optimal.
If $\hat{x}=0$ and $\Delta f(0) \geq 0$ then, since f is integer-convex, $\Delta f(x) \geq 0$ for all $x \geq 0$.
This implies that $f(0) \leq f(1) \leq f(2) \leq \ldots$, so that $\hat{x}=0$ is optimal.
If $\hat{x}>0, \Delta f(\hat{x}) \geq 0$ and $\Delta f(\hat{x}-1) \leq 0$ then, since f is integer-convex,
$\Delta f(x) \geq 0$ for all $x \geq \hat{x}$ and $\Delta f(x) \leq 0$ for all $x \leq \hat{x}-1$. This implies that
$f(\hat{x}) \leq f(\hat{x}+1) \leq f(\hat{x}+2) \leq \ldots$, and $f(\hat{x}) \leq f(\hat{x}-1) \leq \ldots \leq f(0)$,
so that \hat{x} is optimal.
These optimality criteria can obviously be used for solving problem (1.1):
If $\Delta f(x)<0$ then x is too small to be optimal, while if $\Delta f(x-1)>0$ then x is too large.

2. Minimizing integer-convex separable functions of several variables

Let \mathcal{N}^{n} denote the set of vectors $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top}$ with natural numbers as components. Further, let f be a given function from \mathcal{N}^{n} to \mathbb{R}, and consider the optimization problem

$$
\begin{equation*}
\text { minimize } f(\mathbf{x}) \text { subject to } \mathbf{x} \in \mathcal{N}^{n} . \tag{2.1}
\end{equation*}
$$

Def: The vector $\hat{\mathbf{x}} \in \mathcal{N}^{n}$ is an optimal solution to (2.1) if $f(\hat{\mathbf{x}}) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{N}^{n}$.
In this case, the optimal value of the problem (2.1) is given by $f(\hat{\mathbf{x}})$.
Def: The function f from \mathcal{N}^{n} to \mathbb{R} is separable if f can be written

$$
\begin{equation*}
f(\mathbf{x})=\sum_{j=1}^{n} f_{j}\left(x_{j}\right) \tag{2.2}
\end{equation*}
$$

where, for each $j=1, \ldots, n, f_{j}$ is a function from \mathcal{N} to \mathbb{R}.
For separable functions, there is a natural definition of integer-convexity:
Def: The separable function f in (2.2) is integer-convex if each f_{j} is integer-convex.
Prop 2.1: Assume that f is an integer-convex separable function from \mathcal{N}^{n} to \mathbb{R}.
Then the vector $\hat{\mathbf{x}}$ is an optimal solution to problem (2.1) if and only if the following inequalities are satisfied for each $j=1, \ldots, n$:

$$
\begin{align*}
\Delta f_{j}\left(\hat{x}_{j}-1\right) \leq 0 \leq \Delta f_{j}\left(\hat{x}_{j}\right) & \text { if } \quad \hat{x}_{j}>0 \\
0 \leq \Delta f_{j}(0) & \text { if } \quad \hat{x}_{j}=0 . \tag{2.3}
\end{align*}
$$

Proof: The statement follows from Prop 1.1, together with the observation that the sum $f(\mathbf{x})=\sum_{j} f_{j}\left(x_{j}\right)$ is minimized if and only if each term $f_{j}\left(x_{j}\right)$ is minimized (since there is no coupling between the variables).

3. Efficient points for two integer-convex separable functions

Let f and g be two given integer-convex separable functions from \mathcal{N}^{n} to \mathbb{R} :

$$
\begin{equation*}
f(\mathbf{x})=\sum_{j=1}^{n} f_{j}\left(x_{j}\right) \text { and } g(\mathbf{x})=\sum_{j=1}^{n} g_{j}\left(x_{j}\right) \tag{3.1}
\end{equation*}
$$

Further assume that both $f(\mathbf{x})$ and $g(\mathbf{x})$ stands for quantities that we would like to be small, but that each $f_{j}\left(x_{j}\right)$ is strictly decreasing in x_{j} while each $g_{j}\left(x_{j}\right)$ is strictly increasing in x_{j}. This causes a conflict: Large values on the variables x_{j} will tend to make $f(\mathbf{x})$ small, which is desirable, but $g(\mathbf{x})$ large, which is undesirable. Small values on the variables x_{j} will tend to make $g(\mathbf{x})$ small, which is desirable, but $f(\mathbf{x})$ large, which is undesirable. This section deals with how to compromise between these conflicting goals.

To summarize the assumptions:

$$
\begin{array}{ll}
\Delta f_{j}\left(x_{j}\right) \leq \Delta f_{j}\left(x_{j}+1\right)<0 & \text { for all } \mathrm{j} \text { and all } x_{j} \in \mathcal{N}, \\
0<\Delta g_{j}\left(x_{j}\right) \leq \Delta g_{j}\left(x_{j}+1\right) & \text { for all } \mathrm{j} \text { and all } x_{j} \in \mathcal{N} . \tag{3.2}
\end{array}
$$

Let $g^{\max }$ be a given upper bound on the acceptable values of $g(\mathbf{x})$: Points \mathbf{x} with $g(\mathbf{x})>g^{\max }$ are assumed to be unacceptable (e.g. too expensive). Further let

$$
\begin{equation*}
X=\left\{\mathbf{x} \in \mathcal{N}^{n} \mid g(\mathbf{x}) \leq g^{\max }\right\} . \tag{3.3}
\end{equation*}
$$

Since each function g_{j} is strictly increasing and integer-convex, the set X contains a finite number of vectors \mathbf{x}, but this finite number may in practical applications be extremely large.
Def: The vector $\hat{\mathbf{x}} \in X$ is an efficient solution corresponding to the above setting if there are constants $\alpha>0$ and $\beta>0$ such that $\hat{\mathbf{x}}$ is an optimal solution to the following optimization problem in \mathbf{x} :

$$
\begin{equation*}
\operatorname{minimize} \alpha g(\mathbf{x})+\beta f(\mathbf{x}) \text { subject to } \mathbf{x} \in X \text {. } \tag{3.4}
\end{equation*}
$$

Next, we will give a natural geometric interpretation of the efficient solutions defined above.
Let

$$
\begin{equation*}
M=\{(g(\mathbf{x}), f(\mathbf{x})) \mid \mathbf{x} \in X\} \subset \mathbb{R}^{2} \tag{3.5}
\end{equation*}
$$

This set M contains a finite (but possibly extremely large) number of points in \mathbb{R}^{2}. To get a picture of M, we may imagine that the points in M are plotted in a coordinate system where the horizontal axis shows $g(\mathbf{x})$ and the vertical axis shows $f(\mathbf{x})$.

The convex hull of M is defined as the smallest convex set in \mathbb{R}^{2} which contains M. Geometrically, the convex hull of M is what you get if you "stretch a rope" around M.

The efficient curve for the current setting is the piecewise linear curve that constitutes the "southwestern boundary" of the convex hull of M. Points $(g(\mathbf{x}), f(\mathbf{x})) \in M$ which lie on this efficient curve are called efficient points, and the corresponding vectors \mathbf{x} are in fact the efficient solutions defined above. Here is an argument to motivate this last statement:

From a two-dimensional figure where the points of M are plotted and the convex hull of M is drawn, it follows that a point $(\hat{\xi}, \hat{\eta})=(g(\hat{\mathbf{x}}), f(\hat{\mathbf{x}})) \in M$ belongs to the "southwestern boundary" of the convex hull of M if and only if there are constants $\alpha>0$ and $\beta>0$ such that $(\hat{\xi}, \hat{\eta})$ is an optimal solution to the following optimization problem in ξ and η :

$$
\begin{equation*}
\text { minimize } \alpha \xi+\beta \eta \text { subject to }(\xi, \eta) \in M \text {. } \tag{3.6}
\end{equation*}
$$

But this problem (3.6) is equivalent to the the above problem (3.4) in \mathbf{x}.

Typically, we are interested in determining the efficient curve for a given situation, with given functions f and g. It turns out that even if the number of points in M is extremely large, it is surprisingly easy to determine the efficient curve! We will describe below how this is done, but first some preparatory results.
Prop 3.1: The vector $\hat{\mathbf{x}} \in X$ minimizes $\alpha g(\mathbf{x})+\beta f(\mathbf{x})$ subject to $\mathbf{x} \in X$ if and only if the following conditions are satisfied for each $j=1, \ldots, n$:

$$
\begin{gather*}
\frac{-\Delta f_{j}\left(\hat{x}_{j}\right)}{\Delta g_{j}\left(\hat{x}_{j}\right)} \leq \frac{\alpha}{\beta} \leq \frac{-\Delta f_{j}\left(\hat{x}_{j}-1\right)}{\Delta g_{j}\left(\hat{x}_{j}-1\right)} \text { if } \hat{x}_{j}>0 \tag{3.7}\\
\frac{-\Delta f_{j}(0)}{\Delta g_{j}(0)} \leq \frac{\alpha}{\beta} \quad \text { if } \quad \hat{x}_{j}=0 \tag{3.8}
\end{gather*}
$$

Proof: Just replace $f(\mathbf{x})$ by $\alpha g(\mathbf{x})+\beta f(\mathbf{x})$ in Prop 2.1

From this proposition, together with the above definition of an efficient solution, we get the following criteria for deciding whether a vector $\hat{\mathbf{x}}$ is an efficient solution or not:

Prop 3.2: $\hat{\mathbf{x}} \in X$ is an efficient solution if and only if there are constants $\alpha>0$ and $\beta>0$ such that the conditions (3.7)-(3.8) are satisfied for each $j=1, \ldots, n$.

The following result shows that each efficient solution is in fact an optimal solution to two particular optimization problems.
Prop 3.3: Assume that $\hat{\mathbf{x}} \in X$ is an efficient solution, and let $\hat{g}=g(\hat{\mathbf{x}})$ and $\hat{f}=f(\hat{\mathbf{x}})$. Then $\hat{\mathbf{x}}$ is an optimal solution to both the following optimization problems:

$$
\begin{align*}
& \text { minimize } f(\mathbf{x}) \text { subject to } g(\mathbf{x}) \leq \hat{g}, \mathbf{x} \in X . \tag{3.9}\\
& \text { minimize } g(\mathbf{x}) \text { subject to } f(\mathbf{x}) \leq \hat{f}, \mathbf{x} \in X . \tag{3.10}
\end{align*}
$$

Proof: If $\hat{\mathbf{x}}$ is an efficient solution then there are constants $\alpha>0$ and $\beta>0$ such that

$$
\begin{equation*}
\alpha g(\hat{\mathbf{x}})+\beta f(\hat{\mathbf{x}}) \leq \alpha g(\mathbf{x})+\beta f(\mathbf{x}), \text { for all } \mathbf{x} \in X \tag{3.11}
\end{equation*}
$$

First, take an arbitrary $\mathbf{x} \in X$ such that $g(\mathbf{x}) \leq \hat{g}$. Then, according to (3.11), it holds that

$$
\begin{equation*}
f(\hat{\mathbf{x}})-f(\mathbf{x}) \leq(\alpha / \beta)(g(\mathbf{x})-g(\hat{\mathbf{x}}))=(\alpha / \beta)(g(\mathbf{x})-\hat{g}) \leq 0, \tag{3.12}
\end{equation*}
$$

which implies that $\hat{\mathbf{x}}$ is an optimal solution to (3.9).
Next, take an arbitrary $\mathbf{x} \in X$ such that $f(\mathbf{x}) \leq \hat{f}$. Then, according to (3.11), it holds that

$$
\begin{equation*}
g(\hat{\mathbf{x}})-g(\mathbf{x}) \leq(\beta / \alpha)(f(\mathbf{x})-f(\hat{\mathbf{x}}))=(\beta / \alpha)(f(\mathbf{x})-\hat{f}) \leq 0 \tag{3.13}
\end{equation*}
$$

which implies that $\hat{\mathbf{x}}$ is an optimal solution to (3.10).

Important note:

Since the constants α and β are assumed to be >0, and since $\hat{\mathbf{x}}$ minimizes $\alpha g(\mathbf{x})+\beta f(\mathbf{x})$ if and only if $\hat{\mathbf{x}}$ minimizes $g(\mathbf{x})+(\beta / \alpha) f(\mathbf{x})$, (and if and only if $\hat{\mathbf{x}}$ minimizes $(\alpha / \beta) g(\mathbf{x})+f(\mathbf{x})$), we may without loss of generality assume that $\alpha=1$ everywhere above (or, alternatively, that $\beta=1$ everywhere above). This is sometimes done in applications of this theory.

4. Marginal allocation algorithm for generating efficient solutions

We will now describe a surprisingly simple algorithm for determining the efficient curve described above, but first we repeat the assumptions that f is integer-convex and strictly decreasing in each variable, while g is integer-convex and strictly increasing in each variable.
The algorithm start from $\mathbf{x}^{(0)}=\mathbf{0}$ (which is an efficient solution) and generates efficient solutions $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}, \ldots$ "from left to right", which means that each new generated point has a higher value on $g(\mathbf{x})$ but a lower value on $f(\mathbf{x})$ than the previously generated point. Throughout the algorithm $\mathbf{x}^{(k)}$ denotes the k :th generated efficient solution.
The algorithm terminates when there is no longer any efficient solution with $g(\mathbf{x}) \leq g^{\max }$.

Step 0:

Generate a table with n columns as follows. For $j=1, \ldots, n$, fill the j :th column from the top and down with the quotients $-\Delta f_{j}(0) / \Delta g_{j}(0),-\Delta f_{j}(1) / \Delta g_{j}(1),-\Delta f_{j}(2) / \Delta g_{j}(2)$, etc... (A moderate number of quotients will suffice, additional quotients can be calculated as needed.) Note that the quotients are positive and strictly decreasing in each column.
Set $k=0, \mathbf{x}^{(0)}=(0, \ldots, 0)^{\top}, g\left(\mathbf{x}^{(0)}\right)=g(\mathbf{0})$ and $f\left(\mathbf{x}^{(0)}\right)=f(\mathbf{0})$.
Let all the quotients in the table be uncanceled.

Step 1:

Select the largest uncanceled quotient in the table (if there are several equally large, choose one of these arbitrarily). Cancel this quotient and let ℓ be the number of the column from which the quotient was canceled.

Step 2:

Let $k:=k+1$. Then let $x_{\ell}^{(k)}=x_{\ell}^{(k-1)}+1$ and $x_{j}^{(k)}=x_{j}^{(k-1)}$ for all $j \neq \ell$.
Further, calculate $f\left(\mathbf{x}^{(k)}\right)=f\left(\mathbf{x}^{(k-1)}\right)+\Delta f_{\ell}\left(x_{\ell}^{(k-1)}\right)$ and $g\left(\mathbf{x}^{(k)}\right)=g\left(\mathbf{x}^{(k-1)}\right)+\Delta g_{\ell}\left(x_{\ell}^{(k-1)}\right)$. If $g\left(\mathbf{x}^{(k)}\right) \geq g^{\max }$, terminate the algorithm. Otherwise, go to Step 1 .

Note that each generated solution $\mathbf{x}^{(k)}$ differs from the previously generated solution $\mathbf{x}^{(k-1)}$ in just one component. The name of the algorithm stems from the fact that

$$
\frac{-\Delta f_{j}\left(x_{j}\right)}{\Delta g_{j}\left(x_{j}\right)}=\frac{\text { decrease in } f(\mathbf{x}) \text { if } x_{j} \text { is increased by } 1}{\text { increase in } g(\mathbf{x}) \text { if } x_{j} \text { is increased by } 1 .}
$$

Hence, in each step of the algorithm, we increase the x_{j} which gives marginally the largest decrease in $f(\mathbf{x})$ per increase in $g(\mathbf{x})$.
Prop 4.1: Each generated solution $\mathbf{x}^{(k)}$ is an efficient solution.
Proof: Consider a given generated solution $\mathbf{x}^{(k)}$. Choose $\alpha>0$ and $\beta>0$ such that $\alpha / \beta=$ the quotient that was canceled in Step 1 immediately before $\mathbf{x}^{(k)}$ was generated in Step 2. Then all canceled quotients are $\geq \alpha / \beta$, while all uncanceled quotients are $\leq \alpha / \beta$. But then $\mathbf{x}^{(k)}$ and α / β satisfy conditions (3.7)-(3.8) for each $j=1, \ldots, n$, which implies that $\mathbf{x}^{(k)}$ is an efficient solution.

Prop 4.2: Assume that all quotients $-\Delta f_{j}\left(x_{j}\right) / \Delta g_{j}\left(x_{j}\right)$ in the original table are different. Then the algorithm generates all efficient solutions which satisfy $g(\mathbf{x}) \leq g^{\max }$.

Proof: Assume that $\hat{\mathbf{x}}$ is an efficient solution. Then the conditions (3.7)-(3.8) are satisfied for some α / β. But if all quotients are different, then α / β can be perturbed such that all inequalities in (3.7)-(3.8) becomes strict inequalities, so that, for each $j=1, \ldots, n$,

$$
\begin{align*}
& \frac{-\Delta f_{j}\left(x_{j}\right)}{\Delta g_{j}\left(x_{j}\right)}<\frac{\alpha}{\beta} \text { if } x_{j} \geq \hat{x}_{j} \tag{4.1}\\
& \frac{-\Delta f_{j}\left(x_{j}\right)}{\Delta g_{j}\left(x_{j}\right)}>\frac{\alpha}{\beta} \text { if } x_{j}<\hat{x}_{j} \tag{4.2}
\end{align*}
$$

These conditions determine $\hat{\mathbf{x}}$ uniquely. However, this solution will actually be generated by the algorithm in the stage where the latest canceled quotient is $>\alpha / \beta$, while the largest quotient that has not yet been canceled is $<\alpha / \beta$.

5. An important special case

Assume that $g_{j}\left(x_{j}\right)=c x_{j}$, where c is a positive constant which do not depend on j, so that

$$
\begin{equation*}
g(\mathbf{x})=c \sum_{j=1}^{n} x_{j} \tag{5.1}
\end{equation*}
$$

Then the generated efficient points satisfy $g\left(\mathbf{x}^{(k)}\right)=c k$, for $k=1,2, \ldots$
It then follows from Prop 3.3 that, for each $k \in \mathcal{N}, \mathbf{x}^{(k)}$ is an optimal solution to the problem

$$
\begin{equation*}
\operatorname{minimize} f(\mathbf{x}) \text { subject to } g(\mathbf{x}) \leq c k, \mathbf{x} \in X \tag{5.2}
\end{equation*}
$$

Moreover, since $g(\mathbf{x}) / c=\sum_{j} x_{j} \in \mathcal{N}$ for all $\mathbf{x} \in X$, it follows that if the constant b_{k} satisfies $c k \leq b_{k}<c(k+1)$, then $\mathbf{x}^{(k)}$ is an optimal solution also to the problem

$$
\begin{equation*}
\text { minimize } f(\mathbf{x}) \text { subject to } g(\mathbf{x}) \leq b_{k}, \mathbf{x} \in X \tag{5.3}
\end{equation*}
$$

Thus, for any right hand side $b>0$, we can solve the problem

$$
\begin{equation*}
\text { minimize } f(\mathbf{x}) \text { subject to } g(\mathbf{x}) \leq b, \mathbf{x} \in X \tag{5.4}
\end{equation*}
$$

Just let k be obtained by rounding b / c downwards to the nearest integer. Then $\mathbf{x}^{(k)}$ is an optimal solution.

