Some useful results from probability theory
Some useful results from probability theory

The conditional probability of A given B is defined by

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Law of total probability

If B_{n} form a partition of the sample space, i.e., the B_{n} are disjoint and the union is the whole sample space, then

$$
\operatorname{Pr}(A)=\sum_{n} \operatorname{Pr}\left(A \mid B_{n}\right) \operatorname{Pr}\left(B_{n}\right)
$$

In particular, if X and Y are discrete valued stochastic variables, then

$$
\operatorname{Pr}(X=x)=\sum_{y} \operatorname{Pr}(X=x \mid Y=y) \operatorname{Pr}(Y=y)
$$

Law of total expectation (when Y takes discrete values y)

$$
E(X)=\sum_{y} E(X \mid Y=y) P(Y=y)
$$

