
Suggested solutions for the exam in SF2863 Systems Engineering.
December 18, 2010 8.00–13.00

Examiner: Per Enqvist, phone: 790 62 98

1. (a) Introduce the two states, s = e, if the parking spot is empty, and s = f , if it is
full.

Let the decision k = 1 be that you take the parking spot (if possible) and k = 2
be that you do not take it.

Let the parking spots be numbered from −T to T . Let stage n be that you are
at parking spot n.

Define the optimal value function V ∗n (s) be the expected value if you are stand-
ing at parking spot n, the state of that parking spot is s and you use optimal
parking decisions.

Define also the function Vn(s, k) to be the expected value if you are standing
at parking spot n, the state of that parking spot is s you make first decision k
and then you use optimal parking decisions.

If s = f , you can not make the decision to park there, so clearly V ∗n (f) =
Vn(s, 2) = 0.5V ∗n+1(e)+0.5V ∗n+1(f). If s = e, you have the option to park there,
so clearly V ∗n (e) = mink{Vn(s, k)} = min{|n|, 0.5V ∗n+1(e) + 0.5 ∗ V ∗n+1(f)}.
To initiate the recursion, note that if you are standing at the last parking spot
and it is full, you have to leave without getting a parking spot and the value
is then M , i.e. V ∗T (f) = M . If the last parking spot is empty, the value is
M if you do not take it and T if you do take it, since M > T you take it and
V ∗T (e) = T .

(b) Use the recursion.

First V2(e) = 2 and V2(f) = 5.

Then V ∗1 (f) = 0.5V ∗2 (e) + 0.5V ∗2 (f) = 0.5 · 2 + 0.5 · 5 = 3.5,
and V ∗1 (e) = min{1, .5V ∗2 (e) + 0.5V ∗2 (f)} = min{1, 3.5} = 1 for the decision
k = 1, i.e., to park.

Then V ∗0 (f) = 0.5V ∗1 (e) + 0.5V ∗1 (f) = 0.5 · 1 + 0.5 · 3.5 = 2.25,
and V ∗0 (e) = min{0, .5V ∗1 (e) + 0.5V ∗1 (f)} = min{0, 2.25} = 0 for the decision
k = 1, i.e., to park.

Then V ∗−1(f) = 0.5V ∗0 (e) + 0.5V ∗0 (f) = 0.5 · 0 + 0.5 · 2.25 = 1.125,
and V ∗−1(e) = min{| − 1|, .5V ∗0 (e) + 0.5V ∗0 (f)} = min{1, 1.125} = 1 for the
decision k = 1, i.e., to park.

Then V ∗−2(f) = 0.5V ∗−1(e) + 0.5V ∗−1(f) = 0.5 · 1 + 0.5 · 1.125 = 1.0625,
and V ∗−2(e) = min{| − 2|, 0.5V ∗−1(e) + 0.5V ∗−1(f)} = min{2, 1.0625} = 1 for the
decision k = 2, i.e., not to park.

The optimal strategy is to not park in the first spot, and then to park in the
first empty spot coming up.
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It should be noted that this approach can be used to solve problems where e.g. you
receive job offers in sequence and you have to decide if to take the job or continue
searching for a better one.

2. (a) This is the basic EOQ model with d = 10 kilo per hour, c = 5 Euro per kilo,
h = 0.00002 Euro per kilo and hour ans K = 100 Euro.

Then the optimal order quantity is given by Q∗ =
√

2dK
h =

√
2·10·100
2·10−5 = 104

kilos.

Frasse should order this with a time period of t = Q∗/d = 1000 hours, i.e.
nearly 42 days.

(b) If Frasse does not allow shortage, he should buy 1900 kilo of coffee per week.
The expected cost is C(1900) = determined below.

(c) If Frasse allows shortage, then this is a standard stochastic single period model
with no ingoing inventory.

The cost c = 5, shortage cost is p = 20 and h = −2 is the holding cost (salvage
value).

Then C(D,S) = cS+ p(D−S)+ + h(S−D)+ is the cost for a specific demand
D and then

C(S) = cS + p

∫ ∞
S

(t− S)fD(t)dt+ h

∫ S

0
(S − t)fD(t)dt

is the expected value of this cost where we have used the probability density
function fD(d) of D. Now if C ′(S) = c+ p(FD(S)− 1) + hFD(S) = 0 at some
point it must be the optimum, since the function is convex. That is, we should
solve the equation

FD(S∗) =
p− c
p+ h

=
15

18
.

Here,

FD(S∗) =

∫ S∗

0
fD(t)dt =

∫ S∗

1500

1

400
=
S∗ − 1500

400

if S∗ ∈ [1500, 1900]. Hence, S∗ = 1500 + 40015
18 .

The expected cost is now

C(S∗) = cS∗ +
20

400

∫ 1900

S∗
(t− S∗)dt+

−2

400

∫ S∗

1500
(S∗ − t)dt.

C(S∗) = cS∗ +
20

400

[
t2/2− tS∗

]t=1900

t=S∗ +
−2

400

[
tS∗ − t2/2

]S∗

1500

C(S∗) = cS∗ +
20

400

(
19002/2− 1900S∗ − (S∗)2/2 + (S∗)2

)
+
−2

400

(
(S∗)2 − (S∗)2/2− 1500S∗ + 15002/2)

)
C(S∗) = cS∗ +

20

400
(1900− S∗)2 /2 +

−2

400
(S∗ − 1500)2 /2 = 9000
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In particular, the optimal cost if shortage is not allowed, the answer to (b), is
given by

C(1900) = 1900 · 5− 2

400
(1900− 1500)2 /2 = 9100.

C(S∗) is the minimum of C so it is smaller than C(1900), so Frasse should use
the strategy to pay off the customers.

3. Define the states s = 1 to signify that the atmosphere is great, and the state
s = 2 to signify that the atmosphere is good.

Define the decision k = 1 to signify that fresh coffee will be served and k = 2
to signify that budget coffee is served.

The transition probabilities are then given by

p11(1) = 0.9, p12(1) = 0.1, p21(1) = 0.9, p22(1) = 0.1,

p11(2) = 0.5, p12(2) = 0.5, p21(2) = 0.5, p22(2) = 0.5.

The immediate costs Cik, being in state i making decision k, are given by
C11 = −40 + 10 = −30 increased revenue + cost of fresh coffee
C12 = −40 increased revenue
C21 = 10 cost of fresh coffee
C22 = 0

Let y = [y11 y12 y21 y22]
T .

The objective function of the LP is determined by c = [C11 C12 C21 C22]
T .

The constraints corresponds to the equations

y11 + y12 −
1

2
(p11(1)y11 + p11(2)y12 + p21(1)y21 + p21(2)y22) = β1

y21 + y22 −
1

2
(p12(1)y11 + p12(2)y12 + p22(1)y21 + p22(2)y22) = β2

which corresponds to

A =

[
1− 0.5 · 0.9 1− 0.5 · 0.5 −0.5 · 0.9 −0.5 · 0.5
−0.5 · 0.1 −0.5 · 0.5 1− 0.5 · 0.1 1− 0.5 · 0.5

]
, b =

[
1/2
1/2

]
,

if β1 = β2 = 1/2.

From Dik = yik/(yi1 + yi2) we see that Dik = yik in this case and therefore, in
state 1 the optimal decision is 2 and in state 2 the optimal decision is 2.

The optimal value is yT c = −40.

(a)(b) Start with the optimal policy from (a), i.e. let d1(R1) = 2 and d2(R1) = 2.

First step of the policy improvement algorithm is to determine V1 and V2 from
the value determination equation.

V1 = C12 + 0.5 (p11(2)V1 + p12(2)V2) = −40 + 0.5(0.5V1 + 0.5V2)

V2 = C22 + 0.5 (p12(2)V1 + p22(2)V2) = 0 + 0.5(0.5V1 + 0.5V2)
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We get V1 = −60 and V2 = −20.

To find out if it is optimal we do the policy iteration.

For i = 1

min
k
C1k+α(p11(k)V1+p12(k)V2) = min{C11+α(p11(1)V1+p12(1)V2), C12+α(p11(2)V1+p12(2)V2)}

min{−30+0.5(0.9(−60)+0.1(−20)),−40+0.5(0.5(−60)+0.5(−20))} = min{−58,−60}

so the minimizing k̂1 = 2.

For i = 2

min
k
C2k+α(p21(k)V1+p22(k)V2) = min{C21+α(p21(1)V1+p22(1)V2), C22+α(p21(2)V1+p22(2)V2)}

min{10+0.5(0.9(−60)+0.1(−20)), 0+0.5(0.5(−60)+0.5(−20))} = min{−18,−20}

so the minimizing k̂2 = 2.

The optimal value corresponding to the LP is β1V1 + β2V2 = 0.5(−60 =
+0.5(−20) = −40,

(c) We repeat the calculations, now with the policy improvement algorithm without
discounting. Start with R1 as above.

The value determination equation is then

g + v1 = c12 + p11(2)v1 + p12(2)v2

g + v2 = c22 + p21(2)v1 + p22(2)v2

Assuming that v2 = 0,

g + v1 = −40 + 0.5v1

g = 0 + 0.5v1

gives g = −20 and v1 = −40.

To find out if it is optimal we do the policy iteration.

For i = 1

min
k
C1k+p11(k)v1+p12(k)v2) = min{C11+p11(1)v1+p12(1)v2, C12+p11(2)v1+p12(2)v2}

min{−30 + 0.9(−40) + 0.1(0)),−40 + 0.5(−40) + 0.5(0))} = min{−66,−60}

so the minimizing k̂1 = 1.

For i = 2

min
k
C2k+p21(k)v1+p22(k)v2 = min{C21+p21(1)v1+p22(1)v2, C22+p21(2)v1+p22(2)v2}

min{10 + 0.9(−40) + 0.1(0)), 0 + 0.5(−40) + 0.5(0)} = min{−26,−20}

so the minimizing k̂2 = 1.

So the policy R1 is not optimal if there is no discounting.

4. We can think of the parking situation as a Jackson network,
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where aA = 470, aB = 940.

The cruising around for finding a parking can be seen as a M |M |∞ queueing system
with service intensities given by the parking behavior, i.e. the parking intensity is
60/10 = 6 (per hour) and the giving up intensity is 60/15 = 4 (per hour).

The time until the minimum of the two exponential distributed events occurs is also
exponentially distributed, but with intensity 6 + 4 = 10 (per hour).

From the property of the exponential distribution we have a disaggregation of the
process and intensity λA divides into λPA (for those who find parking) and λNA (for
those who leave the lot without parking) where λPA = 6/(6 + 4)λA and λNA = 4/(6 +
4)λA. Similarly for parking lot B, λpB = 6/(6 + 4)λB and λNB = 4/(6 + 4)λB.

Furthermore, λEA = 1/2λNA (intensity for those exiting A and going home), λRA =
1/2λNA (intensity for those returning to lot B) and λEB = 1/4λNB , λRB = 3/4λNB .

(a) We model this situation as a Jackson network.

Balance equations

λA = aA + λRB = aA + 3/4λNB = aA + 3/4 · 4/10λB

λB = aB + λRA = aB + 1/2λNA = aB + 1/2 · 4/10λA

that is

470 = λA − 3/10λB

940 = λB − 2/10λA

which gives λA = 800 and λB = 1100.

The fraction between those who eventually finds a parking spot and those who
go home without parking is

λPA + λPB
λEA + λEB

=
6/10λA + 6/10λB

1/2λNA + 1/4λNB
=

6/10 · 800 + 6/10 · 1100

1/2 · 4/10 · 800 + 1/4 · 4/10 · 1100
= 38/9.

So almost 4 times as many finds parking compared to those who leave without.
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(b) Let VA and VB be the average time it takes from a car enters one of the parking
lots until it either finds a parking spot or gets tired and leaves it. We know
that the intensity for this is 10, so the average time is 60/10 = 6 minutes.

Letting WA be the average time from a car arrives to parking lot A until it
leaves the system (either parks or goes home), and WB be the average time
from a car arrives to parking lot B until it leaves the system, then

WA = VA + 2/10WB = 6 + 2/10WB

WB = VB + 3/10WA = 6 + 3/10WA

and WA = 360/47 and WB = 390/47.

An arbitrary car arrives at parking lot A with probability aA/(aA + aB) = 1/3
and at parking lot B with probability aB/(aA +aB) = 2/3, so the average time
for an arbitrary car is

aA
aA + aB

WA +
aB

aA + aB
WB =

1

3

360

47
+

2

3

390

47
=

380

47

minutes.

(c) The number of cars cruising around is the expected number of “customers” in
queueing system A. The average waiting time is W = VA = 6 minutes and the
“service” intensity is 10, so by Little’s formula L = λAW = 800 · 1/10 = 80.

Alternatively, we can think of the parking lot as the repair shop at a base
with expected service time equal 6 minutes, and approximate the arrivals as a
Poisson process with intensity λA = 800 (per hour). Then, according to Palm’s
Theorem the number of units in the repair shop has a Poission distribution
with mean λAT = 800 · 6/60 = 80.

5. (a) We were given

TABLE 1

n p1(n) p2(n) p3(n)

1 20 30 40
2 15 20 25
3 13 16 20
4 11 12 17
5 10 10 15

.

Then taking differences

TABLE 2

n ∆p1(n) ∆p2(n) ∆p3(n)

1 −5 −10 −15
2 −2 −4 −5
3 −2 −4 −3
4 −1 −2 −2

and again

TABLE 3

n ∆2p1(n) ∆2p2(n) ∆2p3(n)

1 3 6 10
2 0 0 2
3 1 2 1
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and since ∆2pi(n) ≥ 0 for all i and n the function p is integer-convex. It is
seperable since it can be written as the sum of functions only depending on one
element in n each.

(b) From (a) we know that p is a seperable integer-convex function, from the second
table we see that it is also decreasing. Let f = p and g(n) = n1 + n2 + n3,
where g is now increasing and integer-convex, since ∆2g = 0.

We can now use the marginal allocation algorithm, making the table with
columns defined by −∆pi(n)/∆gi(n) = −∆pi(n) since ∆gi(n) = 1:

TABLE MA

n −∆p1(n) −∆p2(n) −∆p3(n)

1 5 10 15
2 2 4 5
3 2 4 3
4 1 2 2

The largest element is 15, so n(4) = (1, 1, 2) is the optimal allocation for 4
researchers and p(n(4)) = 75.

The largest element is 10, so n(5) = (1, 2, 2) is the optimal allocation for 5
researchers and p(n(5)) = 75− 10 = 65.

The largest element is 5, so n(6) = (2, 2, 2) or n(6) = (1, 2, 3) is the optimal
allocation for 6 researchers and p(n(8)) = 65− 5 = 60.

The largest element is again 5, so n(7) = (2, 2, 3) is the optimal allocation for 7
researchers and p(n(7)) = 60− 5 = 55.

The largest element is 4, so n(8) = (2, 3, 3) is the optimal allocation for 8
researchers and p(n(8)) = 55− 4 = 51.


