Suggested solutions for the exam in SF2863 Systems Engineering. June 9, 2011 14.00-19.00

Examiner: Per Enqvist, phone: 7906298

1. (a) Introduce the state, $x_{\ell}=$ how many dollars Frasse has day ℓ. We know that $x_{0}=M$, and $x_{\ell} \in\{0,1,2, \cdots, \geq K\}$, where the last state indicates that Frasse has enough money to pay the loan-shark and will not play anymore, i.e. it is an absorbing state. The states $0,1,2$ could also be collapsed to one state, assuming that $K \geq 3$, since if Frasse has 2 dollars or less he can never get more than 2 dollars by playing the game.
Let $c_{\ell}=$ how many dollars Frasse bets day ℓ. We know that $c_{\ell} \in\left\{0, \cdots, x_{\ell}-1\right\}$. If $c_{\ell}=0$ then $x_{\ell+1}=x_{\ell}$ and if $c_{\ell}=k>0$ then $x_{\ell+1}=x_{\ell}-1+k$ with probability 0.6 and $x_{\ell+1}=x_{\ell}-1-k$ with probability 0.4 .
Define the value function $V_{\ell}^{*}(x)$ to be the probability that Frasse can pay back the loan-shark on day n given that at day ℓ he has x dollars and use the optimal betting strategy.
The DynP equation becomes

$$
V_{\ell}^{*}(x)=\max _{k \in 0, \cdots, x-1}\left\{V_{\ell+1}^{*}(x), 0.6 V_{\ell+1}^{*}(x-1+k)+0.4 V_{\ell+1}^{*}(x-1-k)\right\}
$$

The boundary condition is that $V_{n}^{*}(x)=1$ if $x \geq K$ and 0 otherwise.
(b) Use the recursion.

First $V_{2}(x)=1$ if $x \geq 6$ and 0 otherwise.
Then $V_{1}^{*}(\geq 6)=\max \left\{V_{2}^{*}(\geq 6), 0.6 V_{2}^{*}()+0.4 V_{2}^{*}()\right\}=1$ for $c_{1}=0$,
$V_{1}^{*}(5)=\max \left\{V_{2}^{*}(5), 0.6 V_{2}^{*}(\geq 6)+0.4 V_{2}^{*}(2), 0.6 V_{2}^{*}(\geq 6)+0.4 V_{2}^{*}(1)\right\}=0.6$ for $c_{1}=2,3$,
$V_{1}^{*}(4)=\max \left\{V_{2}^{*}(4), 0.6 V_{2}^{*}(5)+0.4 V_{2}^{*}(1), 0.6 V_{2}^{*}(\geq 6)+0.4 V_{2}^{*}(0)\right\}=0.6$ for $c_{1}=3$,
$V_{1}^{*}(3)=\max \left\{V_{2}^{*}(3), 0.6 V_{2}^{*}(4)+0.4 V_{2}^{*}(0)\right\}=0$ for all feasible c_{1},
$V_{0}^{*}(2)=0$.

Then $V_{0}^{*}(\geq 6)=\max \left\{V_{2}^{*}(\geq 6), 0.6 V_{2}^{*}()+0.4 V_{2}^{*}()\right\}=1$ for $c_{1}=0$,
$V_{0}^{*}(5)=\max \left\{V_{1}^{*}(5), 0.6 V_{1}^{*}(\geq 6)+0.4 V_{1}^{*}(2), 0.6 V_{1}^{*}(\geq 6)+0.4 V_{1}^{*}(1)\right\}=0.6$ for $c_{0}=0,2,3$,
$V_{0}^{*}(4)=\max \left\{V_{1}^{*}(4), 0.6 V_{1}^{*}(5)+0.4 V_{1}^{*}(1), 0.6 V_{1}^{*}(\geq 6)+0.4 V_{1}^{*}(0)\right\}=0.6$ for $c_{0}=0,3$,
$V_{0}^{*}(3)=\max \left\{V_{1}^{*}(3), 0.6 V_{1}^{*}(4)+0.4 V_{1}^{*}(0)\right\}=0.36$ for $c_{0}=2$,
$V_{0}^{*}(2)=0$.
If $M=1,2$ then there is no strategy that can save Frasse.

If $M=3$, then Frasse should bet 2 dollars the first day and if he wins he has 4 dollars and should bet 3 dollars day 2 .

If $M=4$, then Frasse should bet 0 or 3 dollars the first day. If he bets and wins he has 6 dollars and is safe, if he does not bet the first day he bets 3 dollars day 2 .

If $M=5$, then Frasse should bet 0,2 or 3 dollars the first day. If he bets and wins he has ≥ 6 dollars and is safe, if he does not bet the first day he bets 2 or 3 dollars day 2.

If $M=6$ he should make no bets and is safe.
2. (a) This is the basic EOQ model with $d=1$ kilo per week, $c=4-6$ kSEK per kilo, $h=0.1 \mathrm{kSEK}$ per kilo and week and $K=20 \mathrm{kSEK}$.
Then the optimal order quantity is given by $Q^{*}=\sqrt{\frac{2 d K}{h}}=\sqrt{\frac{2 \cdot 1 \cdot 20}{0.1}=20}$ kilos. Frasse should order this with a time period of $t=Q^{*} / d=20 / 1=20$ weeks, and that is the time between his visits to Russia.
(b) EOQ model with quantity discounts. The total cost per unit time, if the unit cost is c_{j}, is $T_{j}(Q)=\frac{d K}{Q}+d c_{j}+\frac{h Q}{2}$. Both the curves T_{1} and T_{2} are convex and has a zero derivative for $Q^{*}=20$. The cost $c_{1}=4-6=-2$ is valid for $0 \leq Q<50$, and The cost $c_{2}=2-6=-4$ is valid for $Q \geq 50$, so we should compare the costs $T_{1}(20)=0$ and $T_{2}(50)=-1.1$. The optimal order quantity will then change to 50 kg .
3. The welding station can be modelled with a $M|M| 2$-queue model and the painting station with a $M|M| 1$-queue model. We can think of the bike shop as a Jackson network,

where $\lambda=3$ bikes per hour, λ_{A} and ${ }_{B}$ are the intensities at steady state to the welding and painting stations. They must satisfy $\lambda+0.1 \lambda_{A}=\lambda_{A}$ and $\lambda+0.2 \lambda_{B}=\lambda_{B}$ which yields, $\lambda_{A}=10 / 3$ and $\lambda_{B}=15 / 4$. We can now check that the low traffic requirements are satisfied, i.e., that $\lambda_{A}=10 / 3<2 * \mu_{A}=4$ and $\lambda_{A}=15 / 4<\mu_{B}=$ 4 , where μ_{A} and μ_{B} are the given service intensities of the workers are the stations.
(a) For a Jackson network the probabilities of a zero queue to the welding station and a zero queue to the painting station can be determined as the probability of having zero queues to independent queueing systems

$$
\begin{aligned}
& P\left(N_{A}=0\right) P\left(N_{B}=0\right)+P\left(N_{A}=0\right) P\left(N_{B}=1\right)+P\left(N_{A}=1\right) P\left(N_{B}=0\right) \\
& +P\left(N_{A}=1\right) P\left(N_{B}=1\right)+P\left(N_{A}=2\right) P\left(N_{B}=0\right)+P\left(N_{A}=2\right) P\left(N_{B}=1\right)
\end{aligned}
$$

This is a lot of computations, so here we reduce the computations to show the probability of an empty system, no queues and no service,

$$
\begin{gathered}
P\left(N_{A}=0, N_{B}=0\right)=P\left(N_{A}=0\right) P\left(N_{B}=0\right)=\frac{1-\rho_{A}}{1+\rho_{A}}\left(1-\rho_{B}\right)= \\
=\frac{1-10 / 3 / 4}{1+10 / 3 / 4}(1-15 / 4 / 4)=1 / 176
\end{gathered}
$$

The average queue lengths are

$$
L_{A}=\frac{2 \rho_{A}}{1-\rho_{A}^{2}}=\frac{5}{3} \frac{36}{11}
$$

and

$$
L_{B}=\frac{\rho_{B}}{1-\rho_{B}}=\frac{5}{3} \frac{36}{11}=15 .
$$

(b) Let V_{A} and V_{B} be the average time it takes from a car enters one of the service stations until it leaves it, i.e., $V_{A}=L_{A} / \lambda_{A}=18 / 11$ and $V_{B}=L_{B} / \lambda_{B}=4$.
Letting W_{A} be the average time from a frame arrives to station A until it leaves the factory and W_{B} be the average time from the frame arrives to station B until it leaves the factory, then

$$
\begin{gathered}
W_{A}=V_{A}+0.1 W_{A}+0.9 W_{B} \\
W_{B}=V_{B}+0.2 W_{B}
\end{gathered}
$$

and $W_{A}=675 / 99$ and $W_{B}=4 / 0.8=5$.
The average time it takes for a bike to be welded and painted properly is approximately 6.7 hours.
4. (a) f and g are clearly seperable, so we can just check the properties of f_{k} and g_{k} for $k=1,2,3$.
Note that $\Delta f_{k}(x)=-3$ so it is decreasing and $\Delta g_{k}(x)=k(x+1)^{2}$ so it is increasing.
Since $\Delta^{2} f_{k}(x)=0$ and $\Delta^{2} g_{k}(x)=k(x+2)^{2}-k(x+1)^{2}>0$ they are both integer convex (for positive x).
(b) When we apply the marginal allocation algorithm we want to compare the quotients $-\Delta f_{k}(x) / \Delta g_{k}(x)$ and find the largest elements when $k=1,2,3$ and $x=1,2,3, \cdots$. Here, $-\Delta f_{k}=3$ is a constant so it is easier to find the smallest of the quotients $3 \Delta g_{k}(x) /\left(-\Delta f_{k}(x)\right)=\Delta g_{k}(x)$.

n	$\Delta g_{1}(n)$	$\Delta g_{2}(n)$	$\Delta g_{3}(n)$
1	4	8	12
2	9	18	27
3	16	32	48
4	25	50	75

The smallest element is 4 , so $n^{(4)}=(2,1,1)$ is the optimal allocation for sum of x is 4 and $f\left(n^{(4)}\right)=48, g\left(n^{(4)}\right)=10$.
The smallest element is 8 , so $n^{(5)}=(2,2,1)$ is the optimal allocation for sum of x is 5 and $f\left(n^{(5)}\right)=45, g\left(n^{(5)}\right)=18$.
The smallest element is 9 , so $n^{(6)}=(3,2,1)$ is the optimal allocation forsum of x is 6 and $f\left(n^{(6)}\right)=42, g\left(n^{(6)}\right)=27$
The smallest element is 12 , so $n^{(7)}=(3,2,2)$ is the optimal allocation for sum of x is 7 and $f\left(n^{(7)}\right)=39, g\left(n^{(7)}\right)=39$
The smallest element is 16 , so $n^{(8)}=(4,2,2)$ is the optimal allocation for sum of x is 8 and $f\left(n^{(8)}\right)=36, g\left(n^{(8)}\right)=55$
(c) The optimal soultion is $\hat{x}=(3,2,1)$ which corresponds to the efficient point with $g(\hat{x})=27$ and $f(\hat{x})=42$.
5. (a) We need to keep track of what the price of gas is and how much gas there is in the tank.
Define the state
$x_{k}= \begin{cases}1 & \text { if the price is high and the tank is full at beginning of day } k \\ 2 & \text { if the price is high and the tank is half-full at beginning of day } k \\ 3 & \text { if the price is low and the tank is full at beginning of day } k \\ 4 & \text { if the price is low and the tank is half-full at beginning of day } k\end{cases}$
Define the decisions

$$
c_{k}= \begin{cases}1 & \text { if Frasse fills no gas at the end of day } k \\ 2 & \text { if Frasse fills half-tank of gas at the end of day } k \\ 3 & \text { if Frasse fills full-tank of gas at the end of day } k\end{cases}
$$

Then the costs of making decision $c_{k}=1$ is 0 , the cost of making decision $c_{k}=2$ is $H / 2$ if $x_{k}=1,2$ and $L / 2$ if $x_{k}=3,4$, and the cost of making decision $c_{k}=3$ is $H / 2$ if $x_{k}=2$ and $L / 2$ if $x_{k}=4$.
In states $x_{k}=1,3$ the decision $c_{k}=1,2$ are feasible and in states $x_{k}=2,4$ the decision $c_{k}=2,3$ are feasible.
(b) It is best to buy as much gas as possible when the price is low and as little as possible when the price is high.
Guessed policy:
If $x_{k}=1$, make decision $c_{k}=1$, for the cost 0 .
If $x_{k}=2$, make decision $c_{k}=2$, for the cost $H / 2$.
If $x_{k}=3$, make decision $c_{k}=2$, for the cost $L / 2$.
If $x_{k}=4$, make decision $c_{k}=3$, for the cost L.

This will give the probability transition matrix

$$
P=\left[\begin{array}{rrrr}
0 & 0.6 & 0 & 0.4 \\
0 & 0.6 & 0 & 0.4 \\
0.2 & 0 & 0.8 & 0 \\
0.2 & 0 & 0.8 & 0
\end{array}\right]
$$

The stationary probabilities are given by the solution to $\pi=\pi P$ and $\sum \pi_{i}=1$, i.e.

$$
\pi=\frac{1}{15}(2,3,8,2)
$$

and the stationary cost is $1 / 15(0 \cdot 2+H / 2 \cdot 3+L / 2 \cdot 8+L \cdot 2)=3.2$.
(c) Use the policy iteration algorithm. Let $v_{4}=0$, then the value determination equations

$$
\begin{gathered}
g+v_{1}=0.6 v_{2} \\
g+v_{2}=H / 2+0.6 v_{2} \\
g+v_{3}=L / 2+0.2 v_{1}+0.8 v_{3} \\
g=L+0.2 v_{1}+0.8 v_{3}
\end{gathered}
$$

gives $v_{1}=-2, v_{2}=2, v_{3}=-3$ and $g=3.2$ as in (b). (This calculation is an alternative solution method that can be used in b)
To find out if it is optimal we do one step of the policy iteration.
For $i=1$

$$
\begin{aligned}
& \min _{k=1,2}\left\{C_{1 k}+\left(p_{11}(k) v_{1}+p_{12}(k) v_{2}+p_{13}(k) v_{1}+p_{14}(k) v_{4}\right)\right\}= \\
= & \min \left\{C_{11}+v\left(p_{11}(1) v_{1}+p_{12}(1) v_{2}+p_{13}(1) v_{3}+p_{14}(1) v_{4}\right), C_{12}+v\left(p_{11}(2) v_{1}+p_{12}(2) v_{2}+p_{13}(2) v_{3}+p_{14}(2) v_{4}\right)\right\} \\
= & \min \{\underbrace{0+\left(0 v_{1}+0.6 v_{2}+0 v_{3}+0.4 v_{4}\right)}_{1.2}, \underbrace{H / 2+\left(0.6 v_{1}+0 v_{2}+0.4 v_{3}+0 v_{4}\right)}_{1.6}\}=1.2=g+v_{1} \text { for } k=1 .
\end{aligned}
$$

For $i=2$

$$
\begin{aligned}
& \min _{k=2,3}\left\{C_{2 k}+\left(p_{21}(k) v_{1}+p_{22}(k) v_{2}+p_{23}(k) v_{1}+p_{24}(k) v_{4}\right)\right\}= \\
= & \min \left\{C_{22}+v\left(p_{21}(2) v_{1}+p_{22}(2) v_{2}+p_{23}(2) v_{3}+p_{24}(2) v_{4}\right), C_{23}+v\left(p_{21}(3) v_{1}+p_{22}(3) v_{2}+p_{23}(3) v_{3}+p_{24}(3) v_{4}\right)\right\} \\
= & \min \{\underbrace{H / 2+\left(0 v_{1}+0.6 v_{2}+0 v_{3}+0.4 v_{4}\right)}_{5.2}, \underbrace{H+\left(0.6 v_{1}+0 v_{2}+0.4 v_{3}+0 v_{4}\right)}_{5.6}\}=5.2=g+v_{2} \text { for } k=2 .
\end{aligned}
$$

For $i=3$

$$
\begin{aligned}
& \min _{k=1,2}\left\{C_{3 k}+\left(p_{31}(k) v_{1}+p_{32}(k) v_{2}+p_{33}(k) v_{1}+p_{34}(k) v_{4}\right)\right\}= \\
= & \min \left\{C_{31}+v\left(p_{31}(1) v_{1}+p_{32}(1) v_{2}+p_{33}(1) v_{3}+p_{34}(1) v_{4}\right), C_{32}+v\left(p_{31}(2) v_{1}+p_{32}(2) v_{2}+p_{33}(2) v_{3}+p_{34}(2) v_{4}\right)\right\} \\
= & \min \{\underbrace{0+\left(0 v_{1}+0.2 v_{2}+0 v_{3}+0.8 v_{4}\right)}_{0.4}, \underbrace{L / 2+\left(0.2 v_{1}+0 v_{2}+0.8 v_{3}+0 v_{4}\right)}_{0.2}\}=0.2=g+v_{3} \text { for } k=2 .
\end{aligned}
$$

For $i=4$

$$
\begin{aligned}
& \min _{k=2,3}\left\{C_{4 k}+\left(p_{41}(k) v_{1}+p_{42}(k) v_{2}+p_{43}(k) v_{1}+p_{44}(k) v_{4}\right)\right\}= \\
= & \min \left\{C_{42}+v\left(p_{41}(2) v_{1}+p_{42}(2) v_{2}+p_{43}(2) v_{3}+p_{44}(2) v_{4}\right), C_{43}+v\left(p_{41}(3) v_{1}+p_{42}(3) v_{2}+p_{43}(3) v_{3}+p_{44}(3) v_{4}\right)\right\} \\
= & \min \{\underbrace{L / 2+\left(0 v_{1}+0.2 v_{2}+0 v_{3}+0.8 v_{4}\right)}_{3.4}, \underbrace{L+\left(0.2 v_{1}+0 v_{2}+0.8 v_{3}+0 v_{4}\right)}_{3.2}\}=3.2=g+v_{4} \text { for } k=3 .
\end{aligned}
$$

So the guessed strategy is optimal.

