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1. We can think of the farm as a Jackson network. The strawberry field is modelled as
a M |M |∞ queue with arrival intensity λS and service intensity µ∞S = 60/40 = 1.5,
followed by a M |M |1 queue with the same arrival intensity λS and with service
intensity µ1S = 100. The apple garden is modelled as a M |M |∞ queue with arrival
intensity λA and service intensity µ∞A = 60/20 = 3, followed by a M |M |1 queue with
the same arrival intensity λA and with service intensity µ1A = 120.

(a) Let λ0 = 100 be the arrival intensity from the outside. The traffic balance
equations are pλ0 + 0.2λA = λS , (1 − p)λ0 + 0.5λS = λR, which yields, λS =
(80p + 20)/0.9, and λA = 100 + 10/0.9 − (100 − 40/0.9)p. We can now check
that the low traffic requirements are satisfied, i.e., that λS < µ1S = 100 and
λA < µ1A = 120. The first equation tells us that p < 7/8 must hold in order to
obtain steady state.

(b) With p = 0.2 we get λA = 100 and λS = 40.

The probability of no customers in the payment offices is (1 − ρS)(1 − ρA) =
(1− 40/100)(1− 100/120) = 0.1 so it is 10%.

(c) The average number of strawberry pickers is LS = λS/µ
∞
S = 40/1.5 and the

average number of apple pickers is LA = λA/µ
∞
A = 100/3.

(d) We have to add the average number of people in the two payment offices, which
are L1

S = ρS/(1−ρS) = 0.4/0.6 = 2/3 and L1
A = ρA/(1−ρA) = (5/6)/(1/6) = 5.

So the total number is 80/3 + 100/3 + 2/3 + 5 = 197/3.

(e) Let VR, VF and VH be the average time it takes from a call arrives to one of
the service stations until it leaves it, i.e., VR = LR/λR = 2ρR/(1 − ρ2R)/λR =
24/7/24 = 1/7, VF = LF /λF = ρF /(1 − ρF )/λF = 4/8 = 1/2, and VH =
LH/λH = ρH/(1− ρH)/λH = 3/12 = 1/4.

Letting WS be the average time from a customer arrives to the strawberry fields
until it exits the system , WA be the average time from a call arrives to the
apple gardens until it exits the system, then

WS = VS + V 1
S + 1/2WA

WA = VA + V 1
A + 1/5WS

where VS = LS/λS , V 1
S = L1

S/λS , VA = LA/λA, V 1
A = L1

A/λA are the average
times for passing once through the system.

Then WA = 178/135 and WS = 145/108.

The average time in the system for a random arriving customer is then

0.2Ws + 0.8WA = 397/300.
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2. This is a deterministic periodic-review inventory model. Let
n = the number of considered weeks
ri = the demand at week i
Here n = 4 and r1 = r2 = r3 = r4 = 100.

The total cost consists of three parts: The ordering costs for orders, the holding
costs and the fertilizer cost. The latter is 1000 · (r1 + r2 + r3 + r4) = 400000 for all
feasible order plans, so this unavoidable cost may be ignored when searching for an
optimal order plan.

Let C
(j)
i = the minimal remaining (ordering + holding) costs from week i, given

that the inventory is empty at the end of week i − 1 and then filled in such a way
that the next time it will be empty is by the end of week j

Then C
(j)
i = K + h(ri+1 + 2ri+2 + · · ·+ (j − i)rj) + Cj+1.

Further, let
Ci = the minimal remaining (ordering+holding) cost from week i, given that the
inventory is empty at the end of week i− 1.

Then Ci = min{C(i)
i , C

(i+1)
i , · · · , C(n)

i }.

(a) Here, K = 700 and h = 3. We then get that

C4 = C
(4)
4 = 700

C
(4)
3 = 700 + 300 = 1000

C
(3)
3 = 700 + C4 = 1400

C3 = min{C(3)
3 , C

(4)
3 } = 1000

C
(4)
2 = 700 + 300 + 600 = 1600

C
(3)
2 = 700 + 300 + C4 = 1700

C
(2)
2 = 700 + C3 = 1700

C2 = min{C(2)
2 , C

(3)
2 , C

(4)
2 } = 1600

C
(4)
1 = 700 + 300 + 600 + 900 = 2500

C
(3)
1 = 700 + 300 + 600 + C4 = 2300

C
(2)
1 = 700 + 300 + C3 = 2000

C
(1)
1 = 700 + C2 = 2300

C1 = min{C(1)
1 , C

(2)
1 , C

(3)
1 , C

(4)
1 } = 2000

The optimal plan is to order 200 kilo before the first week and 200 kilo before
the third week.

(b) Assume that the cost is now 3 + c.

C4 = C
(4)
4 = 700

C
(4)
3 = 700 + 300 + 100c = 1000 + 100c

C
(3)
3 = 700 + C4 = 1400

C3 = min{C(3)
3 , C

(4)
3 } = 1000 + 100c

as long as c ≤ 4.
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C
(4)
2 = 700 + 300 + 600 + 300c = 1600 + 300c

C
(3)
2 = 700 + 300 + 100c+ C4 = 1700 + 100c

C
(2)
2 = 700 + C3 = 1700 + 100c

C2 = min{C(2)
2 , C

(3)
2 , C

(4)
2 } = 1600 + 300c

as long as c ≤ 1/2.

C
(4)
1 = 700 + 300 + 600 + 900 + 600c = 2500 + 600c

C
(3)
1 = 700 + 300 + 600 + 300c+ C4 = 2300 + 300c

C
(2)
1 = 700 + 300 + +100c+ C3 = 2000 + 200c

C
(1)
1 = 700 + C2 = 2300 + 300c

C1 = min{C(1)
1 , C

(2)
1 , C

(3)
1 , C

(4)
1 } = 2000

as long as c ≥ −1.5 and c ≤ 1/2.

If c < −1.5 then, the optimal plan is to order 400 kilo before the first week. If
c > 1/2, then the optimal plan would change if we ended up with zero inventory
at the beginning of the second week, but this is not the case here. If c > 4,
then the optimal plan is to order 100 kilo every week. (for c = 4 the cost of
storing 100 kilo one week is the same as that of ordering)

3. (a) Pi(ni) = the probability that there is no problem of type i if Frasse has applied
ni extra measures of type i

Then f(n1, · · · , nN ) = P (n1)P (n2) · . . . · · ·P (nN ) described the probability that
there are no problems of any category.

The optimization problem is then

max
n1,···,nN

f(n1, · · · , nN )

s.t.
∑N

i=1Ci(ni) =
∑N

I=1 cini ≤ S
ni ∈ {0, 1, 2, 3, 4, 5} for i = 1, · · · , N.

(b) Introduce the stage ` as the reduced problem when Frasse has only measures
of type `, · · · , N to choose from. Introduce the state, s` = how many dollars
Frasse has at stage `, which we assume is non-negative. Let x` be the number
of measures of type ` that Frasse decides to take. Then s`+1 = s` − c`x`.
Let f∗` (s`) be the optimal value of the reduced problem when the budget is s`.

The DynP recursion can be written as

f∗` (s`) = max
x`=0,···,[s`/c`]

{
P`(x`)f

∗
`+1(s` − x`c`)

}
,

where [·] denotes the integer part of its argument, and the boundary condition
is that f∗N+1 = 1, or f∗N (sN ) = PN ([sN/cN ]).

Assume N = 2, k1 = 1/10, k2 = 1/20, p1 = 0.1, p2 = 0.2, c1 = 3, c2 = 2 and
S = 5.

Let f∗3 = 1.

Then f∗2 (s2) = P2([s2/c2]) = P2([s2/2]) = p2e
k2[s2/2]

Then f∗1 (s1) = maxx1=0,···,[s1/c1] {P1(x1)f
∗
2 (s1 − x1c1)} , and in particular for

s1 = 5

f∗1 (5) = max
x1=0,1

{P1(x1)f
∗
2 (5− 3x1)} = p1p2 max {exp k1 · 0 + k2 · 2, exp k1 · 1 + k2 · 1} ,
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so f∗1 (5) = p1p2e
3/20 since k1 + k2 = 3/20 > 2k2 = 2/20.

(c) Rewrite as the minimization problem

min
n1,···,nN

− log f(n1, · · · , nN )

s.t.
∑N

i=1Ci(ni) =
∑N

I=1 cini ≤ S
ni ∈ {0, 1, 2, 3, 4, 5} for i = 1, · · · , N.

Let g(n) =
∑N

I=1 cini which is a seperable increasing integer-convex function.

Then

F (n) = − log f(n) = − log
N∏
i=1

Pi(ni) = −
N∑
i=1

logPi(ni) = −
N∑
i=1

log pi + kini

is a seperable decreasing integer-convex function.

Note that ∆Fi(x) = −ki and ∆gi(x) = ci, so the quotients −∆Fi(x)/∆gi(x) =
ki/ci does not depend on x. Here k1/c1 = 0.1/3 > k2/c2 = 0.05/2 so the
marginal effect is always larger for the measure of type 1. The efficient allo-
cations are therefore, (n1 = 0, n2 = 0), (n1 = 1, n2 = 0), (n1 = 2, n2 = 0),
(n1 = 3, n2 = 0) corresponding to the total costs 0, 3, 6, 9 USD.

4. (a) We need to keep track of the quality of the crop, define the state

sk =

{
1 if the crop is good year k
0 if the crop is bad year k

Define the decisions

xk =

{
1 if Frasse uses pesticides year k
2 if Frasse uses manure yeark

The transition probabilities are pij(k) = the probability of jumping from state
i to j if we make decision k. Here p11(1) = 0.8, p10(1) = 0.2, p01(1) = 0.6,
p00(1) = 0.4, p11(2) = 0.6, p10(2) = 0.4, p01(2) = 0.4, p00(2) = 0.6.

In the costs we include the revenue with negative sign.

Then the costs of making decision xk = 1 is C11 = 600−0.8∗1200−0.2∗600 =
−480 if sk = 1 and C01 = 600− 0.6 ∗ 1200− 0.4 ∗ 600 = −360 if sk = 0,

the cost of making decision xk = 2 is C12 = 100−0.6∗2000−0.4∗800 = −1420
if sk = 1 and C02 = 100− 0.4 ∗ 2000− 0.6 ∗ 800 = −1180 if sk = 0.

Starting policy:
Always make decision xk = 1.

Use the policy iteration algorithm. Let v0 = 0, then the value determination
equations

g + v1 = −480 + 0.8v1 + 0.2v0

g + v0 = −360 + 0.6v1 + 0.4v0

gives g = −450, v1 = −150.
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To find out if it is optimal we do one step of the policy iteration.

For i = 1 (The crop is good)

min
k=1,2

{C1k + (p11(k)v1 + p10(k)v0)} =

= min{C11 + (p11(1)v1 + p10(1)v0), C12 + (p11(2)v1 + p10(2)v0), }

= min{−480 + (0.8v1 + 0.2v0)︸ ︷︷ ︸
−600

,−1420 + (0.6v1 + 0.4v0)︸ ︷︷ ︸
−1510

, } = −1510(6= g+v1) for k = 2.

For i = 0 (The crop is bad)

min
k=1,2

{C0k + (p00(k)v0 + p01(k)v1)} =

= min{C01 + (p01(1)v1 + p00(1)v0), C02 + (p01(2)v1 + p00(2)v0), }

= min{−360 + (0.6v1 + 0.4v0)︸ ︷︷ ︸
−480

,−1180 + (0.4v1 + 0.6v0)︸ ︷︷ ︸
−12400

, } = −1240(6= g+v2) for k = 2.

So the policy to always use manure is better.

Solving the value determination equation again for the new policy Let v0 = 0,
then the value determination equations

g + v1 = −1420 + 0.6v1 + 0.4v0

g + v0 = −1180 + 0.4v1 + 0.6v0

gives g = −1300. The average gain is 850 USD per year.

(b) We need to keep track of the quality of the crop, and the number of consecutive
years of ecological farming. Define the state Sk = (sk, σk) where sk is as before
and σk = the number of consecutive years of ecological farming. Note that σk
can take any (non-negative) integer value.

Define the decisions as before. The transition probabilities are pimjn(k) = the
probability of jumping from state (i,m) to (j, n) if we make decision k. Here
p1m1n(1) = 0.8, p1m0n(1) = 0.2, p0m1n(1) = 0.6, p0m0n(1) = 0.4, if n = 0,
and otherwise it is zero, and p1m1n(2) = 0.6, p1m0n(2) = 0.4, p0m1n(2) = 0.4,
p0m0n(2) = 0.6. if n = m+ 1, and otherwise it is zero.

Let Cijk = the cost when in state s = i, σ = k making decision x = j. Then
Cijk = Cij − 100k if j = 2 and Cijk = Cij if j = 1.

For the Markov decision Process algorithm to work, the system has to tend to
a stationary condition, but for this problem the extra state is not finite and no
state will actually be recurrent for the optimal strategy.


