KTH Mathematics

Suggested solutions for the exam in SF2863 Systems Engineering. December 12, 2012 14.00-19.00

Examiner: Per Enqvist, phone: 7906298

1. We can think of the support center as a Jackson network. The reception is a $M|M| 2$ queue with arrival intensity λ_{R} and service intensity $\mu_{R}=24$ per server. Frasse's service is a $M|M| 1$ queue with arrival intensity λ_{F} and service intensity $\mu_{F}=40$ per server. The reception is a $M|M| 1$ queue with arrival intensity λ_{H} and service intensity $\mu_{R}=20$ per server.
(a) Let $\lambda_{R}=40$ be the arrival intensity from the outside, i.e. the intensity in to the reception. The traffic balance equations are $\lambda_{F}=3 / 4 \lambda_{R}+1 / 2 \lambda_{H}$ and $\lambda_{H}=$ $1 / 4 \lambda_{R}+1 / 5 \lambda_{F}$ which yields, $\lambda_{F}=350 / 9$ and $\lambda_{H}=160 / 9$. We can now check that the low traffic requirements are satisfied, i.e., that $\lambda_{R}=40<2 * \mu_{R}=48$, $\lambda_{F}=350 / 9<\mu_{F}=40$, and $\lambda_{H}=160 / 9<\mu_{H}=20$.
$L_{R}=2 \rho_{R} /\left(1-\rho_{R}^{2}\right)=60 / 11, L_{F}=\rho_{F} /\left(1-\rho_{F}\right)=35$, and $L_{H}=\rho_{H} /\left(1-\rho_{H}\right)=$ 8.

The average total number of customers in the systems is then $L=L_{R}+L_{H}+$ $L_{F}=43+60 / 11 \approx 48.5$
(b) Let V_{R}, V_{F} and V_{H} be the average time it takes from a call arrives to one of the service stations until it leaves it, i.e., $V_{R}=L_{R} / \lambda_{R}=2 \rho_{R} /\left(1-\rho_{R}^{2}\right) / \lambda_{R}=$ $60 / 11 / 40=3 / 22, V_{F}=L_{F} / \lambda_{F}=\rho_{F} /\left(1-\rho_{F}\right) / \lambda_{F}=35 /(350 / 9)=9 / 10$, and $V_{H}=L_{H} / \lambda_{H}=\rho_{H} /\left(1-\rho_{H}\right) / \lambda_{H}=8 /(160 / 9)=9 / 20$.
Letting W_{R} be the average time from a call arrives to station R until it exits the system, W_{F} be the average time from a call arrives to station F until it exits the system, and W_{H} be the average time from the call arrives to station H until it exits the system, then

$$
\begin{gathered}
W_{R}=V_{R}+3 / 4 W_{F}+1 / 4 W_{H} \\
W_{F}=V_{F}+1 / 5 W_{H} \\
W_{H}=V_{H}+1 / 2 W_{F}
\end{gathered}
$$

and $W_{R}=1.21$.
Alternatively, Wilsons formula says that $W_{R}=L / \Lambda_{R}=48.5 / 40=1.21$.
The average cost is then $W_{R} * 4 * 60=291$ SEK
2. This can be solved using the newsboy problem formulation. Let $p=m=20$, $h=k-g=40-10=30$ and $c=C-k=30-40=-10$.
(a) Then the optimal target price satisfies $\frac{p-c}{p+h}=\frac{20+10}{20+30}=\frac{30}{50}=F\left(S^{*}\right)$.
F is the cumulative distribution function of the demand, which is assumed to be uniform on the interval $(0,100)$, i.e. $F(t)=t / 100$ on the interval. $F(60)=$ $30 / 50$ and therefore $S^{*}=60$.
(b) The forward difference of the expected cost is

$$
\Delta C(59)=C(60)-C(59)=-10+(20)[60 / 101-1]+(30) 60 / 101=\frac{-1010-820+1800}{101}=-\frac{30}{101}
$$

and

$$
\Delta C(60)=C(61)-C(60)=-10+(20)[61 / 101-1]+(30) 61 / 101=\frac{-1010-800+1830}{101}=\frac{20}{101}
$$

so C decreases from 59 to 60 and then increases from 60 to 61 . Therefore, there is a local minimum at $C=60$, which is also a global minimum since $\Delta^{2} C(S)=(p+h) \Delta F_{\xi}(S)=50 P(\xi=S+1) \geq 0$ shows that the expected cost is an integer-convex function.
3. (a) Let $x_{i}=1$ if app nr i is on the startpage and $x_{i}=0$ if app nr i is not on the startpage.
Let $f\left(x_{1}, \cdots, x_{N}\right)=-\sum_{i=1}^{N} x_{i} v_{i}$ and $g\left(x_{1}, \cdots, x_{N}\right)=\sum_{i=1}^{N} x_{i} s_{i}$.
Then f and g are separable functions, f is decreasing and g is increasing. Furthermore, $\Delta^{2} f=\Delta^{2} g=0$ since the functions are linear, so they are both integer-convex. We can then apply the Marginal Allocation algorithm.
Note that $\Delta f_{i}(x)=-v_{i}$ and $\Delta g_{i}(x)=v_{i}$, so the quotients $-\Delta F_{i}(x) / \Delta g_{i}(x)=$ v_{i} / s_{i} does not depend on x. Here $v_{1} / s_{1}=1 / 1, v_{2} / s_{2}=2 / 1, v_{3} / s_{3}=5 / 2$, $v_{4} / s_{4}=6 / 2, v_{5} / s_{5}=8 / 3$.
The efficient allocations are therefore,

$$
\begin{aligned}
& x^{(0)}=\left(x_{1}=0, x_{2}=0, x_{3}=0, x_{4}=0, x_{5}=0\right), \mathrm{f}\left(\mathrm{x}^{(0)}\right)=0, g\left(x^{(0)}\right)=0 \\
& \mathrm{x}^{(1)}=\left(x_{1}=0, x_{2}=0, x_{3}=0, x_{4}=1, x_{5}=0\right), \mathrm{f}\left(\mathrm{x}^{(1)}\right)=-6, g\left(x^{(1)}\right)=2 \\
& \mathrm{x}^{(2)}=\left(x_{1}=0, x_{2}=0, x_{3}=0, x_{4}=1, x_{5}=1\right), \mathrm{f}\left(\mathrm{x}^{(2)}\right)=-14, g\left(x^{(2)}\right)=5 \\
& \mathrm{x}^{(3)}=\left(x_{1}=0, x_{2}=0, x_{3}=1, x_{4}=1, x_{5}=1\right), \mathrm{f}\left(\mathrm{x}^{(3)}\right)=-19, g\left(x^{(3)}\right)=7 \\
& \mathrm{x}^{(4)}=\left(x_{1}=0, x_{2}=1, x_{3}=1, x_{4}=1, x_{5}=1\right), \mathrm{f}\left(\mathrm{x}^{(4)}\right)=-21, g\left(x^{(4)}\right)=8 \\
& \mathrm{x}^{(5)}=\left(x_{1}=1, x_{2}=1, x_{3}=1, x_{4}=1, x_{5}=1\right), \mathrm{f}\left(\mathrm{x}^{(5)}\right)=-22, g\left(x^{(5)}\right)=9
\end{aligned}
$$

(b) The optimization problem is then

$$
\begin{aligned}
\max _{x_{1}, \cdots, x_{M}} & \sum_{i=1}^{M} x_{i} v_{i} \\
\text { s.t. } & \sum_{i=1}^{M} x_{i} s_{i} \leq N \\
& x_{i} \in\{0,1\} \text { for } i=1, \cdots, M
\end{aligned}
$$

(c) Introduce the stage k as the reduced problem when Frasse has only apps of type k, \cdots, M to choose from. Introduce the state, $n_{k}=$ how many free spaces Frasse has at stage k, which we assume is non-negative.
Let

$$
\begin{aligned}
\max _{x_{k}, \cdots, x_{M}} & \sum_{i=k}^{M} x_{i} v_{i} \\
\left(\mathcal{P}_{k}(n)\right) & \text { s.t. } \\
& \sum_{i=k}^{M} x_{i} s_{i} \leq n \\
& x_{i} \in\{0,1\} \text { for } i=k, \cdots, M .
\end{aligned}
$$

and define $f_{k}^{*}(n)$ to be the function mapping n to the optimal value of $\left(\mathcal{P}_{k}(n)\right)$.
Then $n_{k-1}=n_{k}-s_{k} x_{k}$.
The DynP recursion can be written as

$$
f_{\ell}^{*}\left(n_{\ell}\right)=\max _{x_{\ell}=0,1}\left\{v_{\ell} x_{\ell}+f_{\ell+1}^{*}\left(n_{\ell}-s_{\ell} x_{\ell}\right)\right\}=\max \left\{f_{\ell+1}^{*}\left(n_{\ell}\right), v_{\ell}+f_{\ell+1}^{*}\left(n_{\ell}-s_{\ell}\right)\right\},
$$

and the boundary condition is that $f_{M+1}^{*}=0$.
The DynP problem is solved in the attached figure, where $f_{1}^{*}(0)=0, f_{1}^{*}(1)=2, f_{1}^{*}(2)=6$, $f_{1}^{*}(3)=8, f_{1}^{*}(4)=11, f_{1}^{*}(5)=14, f_{1}^{*}(6)=16, f_{1}^{*}(7)=19, f_{1}^{*}(8)=21$.
The $\hat{x}=(0,1,1,1,1)$ is optimal for $N=8$.
4. (a) We need to keep track of the position of the pawn, define the state

$$
s_{k}= \begin{cases}0 & \text { if pawn is on square } 0 \\ 1 & \text { if pawn is on square 1 } \\ 2 & \text { if pawn is on square 2 } \\ 3 & \text { if pawn is on square } 3\end{cases}
$$

Define the decisions

$$
x_{k}= \begin{cases}1 & \text { if Frasse uses die } 1 \text { turn } k \\ 2 & \text { if Frasse uses die } 2 \text { turn } k\end{cases}
$$

The transition probabilities are
$p_{i j}(k)=$ the probability of jumping from state i to j if we make decision k.
Here, from square 0
$p_{00}(1)=0, p_{01}(1)=1 / 2, p_{02}(1)=1 / 3, p_{03}(1)=1 / 6$,
$p_{00}(2)=0, p_{01}(2)=1 / 3, p_{02}(2)=1 / 3, p_{03}(2)=1 / 3$,
Here, from square 1
$p_{10}(1)=1 / 6, p_{11}(1)=0, p_{12}(1)=1 / 2, p_{13}(1)=1 / 3$,
$p_{10}(2)=1 / 3, p_{11}(2)=0, p_{12}(2)=1 / 3, p_{13}(2)=1 / 3$,
Here, from square 2
$p_{20}(1)=1 / 2, p_{21}(1)=0, p_{22}(1)=0, p_{23}(1)=1 / 2$,
$2 p_{20}(2)=2 / 3, p_{21}(2)=0, p_{22}(2)=0, p_{23}(2)=1 / 3$,
Here, from square 3
$p_{30}(1)=1, p_{31}(1)=0, p_{32}(1)=0, p_{33}(1)=0$,
$p_{30}(2)=1, p_{31}(2)=0, p_{32}(2)=0, p_{33}(2)=0$,
Then the expected "cost" of making decision x_{k} at state s_{k} is $C_{s_{k}, x_{k}}=\sum_{j=0}^{3} q_{s_{k}, j} p_{s_{k}, j}\left(x_{k}\right)$. (The cost is an income here, so we maximize it instead)
So at $s_{k}=0$
$C_{01}=0 \cdot 0+1 \cdot 1 / 2+2 \cdot 1 / 3+3 \cdot 1 / 6=5 / 3$ for $x_{k}=1$
$C_{02}=0 \cdot 0+1 \cdot 1 / 3+2 \cdot 1 / 3+3 \cdot 1 / 3=2$ for $x_{k}=2$

So at $s_{k}=1$
$C_{11}=0 \cdot 1 / 6+1 \cdot 0+2 \cdot 1 / 2+3 \cdot 1 / 3=2$ for $x_{k}=1$
$C_{12}=0 \cdot 1 / 3+1 \cdot 0+2 \cdot 1 / 3+3 \cdot 1 / 3=5 / 3$ for $x_{k}=2$

So at $s_{k}=2$
$C_{21}=0 \cdot 1 / 2+1 \cdot 0+2 \cdot 0+3 \cdot 1 / 2=3 / 2$ for $x_{k}=1$
$C_{22}=0 \cdot 2 / 3+1 \cdot 0+2 \cdot 0+3 \cdot 1 / 3=1$ for $x_{k}=2$

So at $s_{k}=3$
$C_{31}=0 \cdot 1+1 \cdot 0+2 \cdot 0+3 \cdot 0=0$ for $x_{k}=1$
$C_{32}=0 \cdot 1+1 \cdot 0+2 \cdot 0+3 \cdot 0=0$ for $x_{k}=2$
(b) Let $y_{i k}=$ probability of beeing in state i and making decision k.

Let the objective function be defined by (if we maximize, otherwise we have to put a minus in front).

$$
f=C_{01} y_{01}+C_{11} y_{11}+C_{21} y_{21}+C_{31} y_{31}+C_{02} y_{02}+C_{12} y_{12}+C_{22} y_{22}+C_{32} y_{32}
$$

One constraint is (summing all probabilities)

$$
y_{01}+y_{11}+y_{21}+y_{31}+y_{02}+y_{12}+y_{22}+y_{32}=1
$$

non-negativity constraints

$$
y_{01} \geq 0, y_{11} \geq 0, y_{21} \geq 0, y_{31} \geq 0, y_{02} \geq 0, y_{12} \geq 0, y_{22} \geq 0, y_{32} \geq 0
$$

finally

$$
\begin{aligned}
& y_{01}+y_{02}-\left(p_{00}(1) y_{01}+p_{10}(1) y_{11}+p_{20}(1) y_{21}+p_{30}(1) y_{31}+p_{00}(2) y_{02}+p_{10}(2) y_{12}+p_{20}(2) y_{22}+p_{30}(2) y_{32}\right)=0 \\
& y_{11}+y_{12}-\left(p_{01}(1) y_{01}+p_{11}(1) y_{11}+p_{21}(1) y_{21}+p_{31}(1) y_{31}+p_{01}(2) y_{02}+p_{11}(2) y_{12}+p_{21}(2) y_{22}+p_{31}(2) y_{32}\right)=0 \\
& y_{01}+y_{02}-\left(p_{02}(1) y_{01}+p_{12}(1) y_{11}+p_{22}(1) y_{21}+p_{32}(1) y_{31}+p_{02}(2) y_{02}+p_{12}(2) y_{12}+p_{22}(2) y_{22}+p_{32}(2) y_{32}\right)=0 \\
& y_{01}+y_{02}-\left(p_{03}(1) y_{01}+p_{13}(1) y_{11}+p_{23}(1) y_{21}+p_{33}(1) y_{31}+p_{03}(2) y_{02}+p_{13}(2) y_{12}+p_{23}(2) y_{22}+p_{33}(2) y_{32}\right)=0
\end{aligned}
$$

One of these last four should be removed due to linear dependence.
Then, from the solution of the linear program we can determine $\pi_{0}=y_{01}+y_{02}$, $\pi_{1}=y_{11}+y_{12}, \pi_{2}=y_{21}+y_{22}$ and $\pi_{3}=y_{31}+y_{32}$ which are the stationary probabilities of beeing in a certain state..
Finally $D_{i k}=y_{i k} / \pi_{i}$, determines the optimal policy. $D_{i k}$ is defined as the probability of making decision k in state i, but it can be shown that it will be either 0 or 1, i.e., a deterministic policy.
(c) Starting policy:

If $s_{k}=0$, make decision $x_{k}=2$, for the expected cost 2 .
If $s_{k}=1$, make decision $x_{k}=1$, for the expected cost 2 .
If $s_{k}=2$, make decision $x_{k}=1$, for the expected cost $3 / 2$.

If $s_{k}=3$, make decision $x_{k}=1$, for the expected cost 0 .

Use the policy iteration algorithm. Let $v_{3}=0$, then the value determination equations

$$
\begin{gathered}
g+v_{0}=2+0 v_{0}+1 / 3 v_{1}+1 / 3 v_{2}+1 / 3 v_{3} \\
g+v_{1}=2+1 / 6 v_{0}+0 v_{1}+1 / 2 v_{2}+1 / 3 v_{3} \\
g+v_{2}=3 / 2+1 / 2 v_{0}+0 v_{1}+0 v_{2}+1 / 2 v_{3} \\
g+v_{3}=0+1 v_{0}+0 v_{1}+0 v_{2}+0 v_{3}
\end{gathered}
$$

gives $g=123 / 91, v_{0}=123 / 91, v_{1}=9 / 7, v_{2}=75 / 91$ and $v_{3}=0$.
We see that v_{0} is the largest of the v_{i}, so it is best to start from square 0 if we can choose. (assuming we use the initial policy)
To find out if it is optimal we do one step of the policy iteration.
For $i=0$

$$
\begin{gathered}
\max _{k=1,2}\left\{C_{0 k}+\left(p_{00}(k) v_{0}+p_{01}(k) v_{1}+p_{02}(k) v_{2}+p_{03}(k) v_{3}\right)\right\}= \\
=\max \left\{C_{01}+\left(p_{00}(1) v_{0}+p_{01}(1) v_{1}+p_{02}(1) v_{2}+p_{03}(1) v_{3}\right), C_{02}+\left(p_{00}(2) v_{0}+p_{01}(2) v_{1}+p_{02}(2) v_{2}+p_{03}(2) v_{3}\right)\right\} \\
=\max \{\underbrace{5 / 3+\left(1 / 2 v_{1}+1 / 3 v_{2}\right)}_{1411 / 546}, \underbrace{2+\left(1 / 3 v_{1}+1 / 3 v_{2}\right)}_{246 / 91},\}=246 / 91 \text { for } k=2 .
\end{gathered}
$$

For $i=1$

$$
\begin{gathered}
\max _{k=1,2}\left\{C_{1 k}+\left(p_{10}(k) v_{0}+p_{11}(k) v_{1}+p_{12}(k) v_{2}+p_{13}(k) v_{3}\right)\right\}= \\
=\max \left\{C_{11}+\left(p_{10}(1) v_{0}+p_{11}(1) v_{1}+p_{12}(1) v_{2}+p_{13}(1) v_{3}\right), C_{12}+\left(p_{10}(2) v_{0}+p_{11}(2) v_{1}+p_{12}(2) v_{2}+p_{13}(2) v_{3}\right)\right\} \\
=\max \{\underbrace{2+\left(1 / 6 v_{0}+1 / 2 v_{2}\right)}_{240 / 91}, \underbrace{5 / 3+\left(1 / 3 v_{0}+1 / 3 v_{2}\right)}_{653 / 273},\}=240 / 91 \text { for } k=1 .
\end{gathered}
$$

For $i=2$

$$
\begin{gathered}
\max _{k=1,2}\left\{C_{2 k}+\left(p_{20}(k) v_{0}+p_{21}(k) v_{1}+p_{22}(k) v_{2}+p_{23}(k) v_{3}\right)\right\}= \\
=\max \left\{C_{21}+\left(p_{20}(1) v_{0}+p_{21}(1) v_{1}+p_{22}(1) v_{2}+p_{23}(1) v_{3}\right), C_{22}+\left(p_{20}(2) v_{0}+p_{21}(2) v_{1}+p_{22}(2) v_{2}+p_{23}(2) v_{3}\right)\right\} \\
=\max \{\underbrace{3 / 2+\left(1 / 2 v_{0}+1 / 2 v_{2}\right.}_{198 / 91}), \underbrace{1+2 / 3 v_{0}}_{173 / 91},\}=198 / 91 \text { for } k=1 .
\end{gathered}
$$

For $i=3$

$$
\begin{gathered}
\max _{k=1,2}\left\{C_{3 k}+\left(p_{30}(k) v_{0}+p_{31}(k) v_{1}+p_{32}(k) v_{2}+p_{33}(k) v_{3}\right)\right\}= \\
=\max \left\{C_{31}+\left(p_{30}(1) v_{0}+p_{31}(1) v_{1}+p_{32}(1) v_{2}+p_{33}(1) v_{3}\right), C_{32}+\left(p_{30}(2) v_{0}+p_{31}(2) v_{1}+p_{32}(2) v_{2}+p_{33}(2) v_{3}\right)\right\} \\
=\max \{\underbrace{0+\left(1 v_{0}\right)}_{123 / 91}, \underbrace{0+\left(1 v_{0}\right)}_{123 / 91},\}=123 / 91 \text { for } k=1 . \text { (or } 2)
\end{gathered}
$$

So the initial policy is optimal.

