Suggested solutions for the exam in SF2863 Systems Engineering. March 13, 2014 8.00-13.00

Examiner: Per Enqvist, phone: 7906298

1. Without Heathcliff, for the receptionist $\rho_{R}=\lambda_{R} / \mu_{R}=1 / 10$ we get

$$
W_{R}=\frac{L_{R}}{\lambda_{R}}=\frac{1}{\lambda_{R}} \frac{\rho_{R}}{1-\rho_{R}}=1 / 9
$$

and for Frasse $\rho_{F}=\lambda_{F} / \mu_{F}=1 / 1.2$ we get

$$
W_{F}=\frac{L}{\lambda}=\frac{1}{\lambda_{F}} \frac{\rho_{F}}{1-\rho_{F}}=5
$$

The average passing time through the system is then $W_{1}=5+1 / 9$.
With Heathcliff, for the receptionist we get the same. For Heathcliff $\rho_{H}=(1-p) / 2$, and

$$
W_{H}=\frac{L_{H}}{\lambda_{H}}=\frac{1}{\lambda_{H}} \frac{\rho_{H}}{1-\rho_{H}}=\frac{1}{\lambda_{H}} \frac{(1-p) / 2}{1-(1-p) / 2}=\frac{1}{1+p}
$$

and for Frasse we have now $\lambda_{F}=(p+1 / 2(1-p)) \cdot 1=(1+p) / 2 . \rho_{F}=\lambda_{F} / \mu_{F}=$ $(1+p) / 2.4$ we get

$$
W_{F}=\frac{L_{F}}{\lambda_{F}}=\frac{1}{\lambda_{F}} \frac{\rho_{F}}{1-\rho_{F}}=\frac{2}{1.4-p} .
$$

The average passing time through the system is then $W_{2}(p)=1 / 9+(1-p) W_{H}+$ $[(1-p) / 2+p] W_{F}=1 / 9+(1-p) /(1+p)+(1+p) /(1.4-p)$. The minimum is achieved for $\hat{p}=2.4 \sqrt{30}-13$ where the derivative is equal to 0 .
The probability that the $M|M| 1$ system is empty is $P_{0}=1-\rho$.
Without Heathcliff, using independence, we get $(1-1 / 10)(1-1 / 1.2)=0.15$.
With Heathcliff, using independence, we get $(1-1 / 10)(1-(1-p) / 2)(1-(1+p) / 2.4=$ $9 / 40\left(1-p^{2}\right)$.
The savings per hour for the company is $\left(W_{1}-W_{2}(\hat{p})\right) \lambda \cdot 100=5-(1-\hat{p}) /(1+\hat{p})-$ $(1+\hat{p}) /(1.4-\hat{p})=334$ dollars . So employing Heathcliff would save them money. (Unless the company is paying a salary that is above the value their personel is generating)
2. Define the variables.

Let $s_{n}=$ number of laps skied with current skis as lap number n is initiated.
Let the decision $x_{n}=1$ if the skies are changed before starting lap n, and the decision $x_{n}=0$ if the skies are not changed before starting lap n.

Let $V_{n}\left(s_{n}\right)=$ optimal time to goal if at start of lap n with s_{n} laps skied with current skies.
Let $V_{n}\left(s_{n}, x\right)=$ optimal time to goal if at start of lap n with s_{n} laps skied with current skies, and decision x is taken about the ski-change before lap n.
Then

$$
V_{n}(s)=\min _{x \in\{0,1\}} V_{n}(s, x)=\min \left\{25+1 / 2+V_{n+1}(1), 25+s / 3+V_{n+1}(s+1)\right\}
$$

If the skier does no change skis the lap time increases with $1 / 3$ minute for each lap skied with the current skies. If the skier changes skis the lap time increases with $1 / 2$ minute for the actual change.
Where we also used that $s_{n+1}=s_{n}+1$ if the skier does not change skis, and $s_{n+1}=1$ if the skier changes skies before going out for lap n.

We have that $V_{6}(s)=0$. Then

$$
V_{5}(s)=\min \{25+1 / 2,25+s / 3\}= \begin{cases}25+\frac{1}{2} & \text { if } s \geq 2 \\ 25+\frac{s}{3} & \text { if } s \leq 1\end{cases}
$$

We use here that $s \geq 1$ for $n \geq 2$.

$$
\begin{aligned}
& V_{4}(s)=\min \left\{25+1 / 2+V_{5}(1), 25+s / 3+V_{5}(s+1)\right\} \\
= & \min \{25+1 / 2+25+1 / 3,25+s / 3+25+1 / 2\}=50+\frac{5}{6}
\end{aligned}
$$

We use here that $s \geq 1$ for $n \geq 2$.

$$
\begin{gathered}
V_{3}(s)=\min \left\{25+1 / 2+V_{4}(1), 25+s / 3+V_{4}(s+1)\right\} \\
=\min \{25+1 / 2+50+5 / 6,25+s / 3+50+5 / 6\}=\left\{\begin{array}{cl}
75+\frac{8}{6} & \text { if } s \geq 2 \\
75+\frac{7}{6} & \text { if } s=1
\end{array}\right.
\end{gathered}
$$

We use here that $s \geq 1$ for $n \geq 2$.

$$
\begin{aligned}
& V_{2}(s)=\min \left\{25+1 / 2+V_{3}(1), 25+s / 3+V_{3}(s+1)\right\} \\
= & \min \{25+1 / 2+75+7 / 6,25+s / 3+75+8 / 6\}=100+\frac{10}{6}
\end{aligned}
$$

Finally,

$$
\begin{aligned}
& V_{1}(0)=\min \left\{25+1 / 2+V_{2}(1), 25+s / 3+V_{2}(s+1)\right\}_{s=0} \\
= & \min \{25+1 / 2+100+10 / 6,25+0 / 3+100+10 / 6\}=125+\frac{10}{6} .
\end{aligned}
$$

What is the optimal strategy.
With fresh skis from the start $s_{1}=0$, no change is done for the first lap.
For the second lap, $s_{2}=1$, change.
For the third lap, $s_{3}=1$, no change.
For the fourth lap, $s_{4}=2$, change.
For the fifth lap, $s_{5}=1$, no change.
There is an alternative solution which is equally good, if for the second lap there is no change and then change, no change and change.
3. Let d_{i} denote the number of training resources that are assigned to athlete $i, i=$ $1,2,3,4$.
Define functions f and g that we want to minimize, with the right properties. Maximizing performance is the same as minimizing the total finish time. Let $f\left(d_{1}, d_{2}, d_{3}, d_{4}\right)=$ $\left[\left(d_{1}^{2}-10 d_{1}+30\right)+\left(d_{2}^{2}-11 d_{2}+36\right)+\left(d_{3}^{2}-12 d_{3}+44\right)+\left(d_{4}^{2}-13 d_{4}+50\right)\right]$ and $g\left(d_{1}, d_{2}, d_{3}, d_{4}\right)=$ $\sum_{i=1}^{4} d_{i}$. Clearly g is a separable function, increasing and integer-convex.
The continuous version of function f has a gradient $\nabla f=\left(2 d_{1}-10,2 d_{2}-11,2 d_{3}-\right.$ $12,2 d_{4}-13$) which has negative elements for d_{i} less than 8 , which makes the function decreasing. Furthermore, f is seperable, $f=f_{1}\left(d_{1}\right)+f_{2}\left(d_{2}\right)+f_{3}\left(d_{3}\right)+f_{4}\left(d_{4}\right)$, and the functions f_{i} are quadratic functions which are convex, since the Hessian is 2 times the identity matrix.
(Note that $\left.\Delta f_{i}(x) \neq f_{i}^{\prime}(x)\right)$

$-\Delta f$	$-\Delta f_{1}$	$-\Delta f_{2}$	$-\Delta f_{3}$	$-\Delta f_{4}$
$d_{i}=1$	9	10	11	12
$d_{i}=2$	7	8	9	10
$d_{i}=3$	5	6	7	8
$d_{i}=4$	3	4	5	6

Since the values are decreasing in each column the function f is integer-convex for the tabulated values.
Note that $\Delta g_{i}=1$ for all i.
We can then apply the Marginal Allocation algorithm.
Note that the quotients $-\Delta f_{i}(d) / \Delta g_{i}(d)=\Delta f_{i}\left(d_{i}\right)$ are given in the table above.
The efficient allocations are therefore,

$$
\begin{aligned}
& S^{(0)}=\left(s_{1}=0, s_{2}=0, s_{3}=0, s_{4}=0\right), f\left(s^{(0)}\right)=160, g\left(s^{(0)}\right)=0 \\
& S^{(1)}=\left(s_{1}=0, s_{2}=0, s_{3}=0, s_{4}=1\right), f\left(s^{(1)}\right)=148, g\left(s^{(1)}\right)=1 \\
& S^{(2)}=\left(s_{1}=0, s_{2}=0, s_{3}=1, s_{4}=1\right), f\left(s^{(2)}\right)=137, g\left(s^{(2)}\right)=2 \\
& S^{(3)}=\left(s_{1}=0, s_{2}=1, s_{3}=1, s_{4}=1\right), f\left(s^{(3)}\right)=127, g\left(s^{(3)}\right)=3 \\
& S^{(4)}=\left(s_{1}=0, s_{2}=1, s_{3}=1, s_{4}=2\right), f\left(s^{(4)}\right)=117, g\left(s^{(4)}\right)=4 \\
& S^{(5)}=\left(s_{1}=1, s_{2}=1, s_{3}=1, s_{4}=2\right), f\left(s^{(5)}\right)=108, g\left(s^{(5)}\right)=5 \\
& S^{(6)}=\left(s_{1}=1, s_{2}=1, s_{3}=2, s_{4}=2\right), f\left(s^{(6)}\right)=99, g\left(s^{(6)}\right)=6
\end{aligned}
$$

For $s^{(3)}$ there is a an alternative solution with $s_{2}=0$ and $s_{4}=2$.
For $s^{(5)}$ there is a an alternative solution with $s_{1}=0$ and $s_{3}=2$.
4. (a) Let D be the stochastic variabel denoting the demand, and let B denote the number of tickets that Frasse orders.
The profit of Frasse will be

$$
100 \min (D, B)+10 \max (B-D, 0)-60 B
$$

and the expected profit is then

$$
100 \mathbf{E}\left[D-(D-B)^{+}\right]+10 \mathbf{E}\left[(B-D)^{+}\right]-60 B .
$$

Expected cost (disregarding $100 \mathbf{E}[D]$ which does not depend on B) is

$$
\left.C(B)=100 \mathbf{E}(D-B)^{+}\right]-10 \mathbf{E}\left[(B-D)^{+}\right]+60 B
$$

Identifying $c=60, p=100, h=-10$, then

$$
\frac{p-c}{p+h}=\frac{100-60}{100-10}=\frac{4}{9}
$$

The cumulative distribution function for D is $F_{D}(t)=P(D \leq t)=(t-39) / 61$ We should find the smallest B^{*} such that $F_{D}\left(B^{*}\right) \geq 4 / 9$, which gives $B^{*}=67$.
(b) This a deterministic periodic review model, with a small modification. If we order more than 4 cars, the ordering cost goes up
We still have

$$
C_{i}=\min _{j}\left\{C_{i}^{(j)} \mid i \leq j \leq N\right\}
$$

where

$$
C_{i}^{(j)}=C_{j+1}+K \cdot N+h\left(r_{i+1}+2 r_{i+2}+\cdots+(j-i) r_{j}\right),
$$

$K=5, h=1$ and $N=$ ceiling $\left\{\left(r_{i}+r_{i+1}+r_{i+2}+\cdots+r_{j}\right) / 4\right\}$.
When
$C_{4}^{(4)}=5$
then
$C_{4}=\min _{j=4} C_{4}^{(j)}=\min \left\{C_{4}^{(4)}\right\}=5$
When
$C_{3}^{(3)}=5+5=10$
$C_{3}^{(4)}=5+2=7$
then
$C_{3}=\min _{j=3,4} C_{3}^{(j)}=\min \left\{C_{3}^{(3)}, C_{3}^{(4)}\right\}=7$
When
$C_{2}^{(2)}=5+7=12$
$C_{2}^{(3)}=5+1(1)+5=11$
$C_{2}^{(4)}=10+1(1+2 \cdot 2)=15$
then
$C_{2}=\min _{j=2, \cdots, 4} C_{2}^{(j)}=\min \left\{C_{2}^{(2)}, C_{2}^{(3)}, C_{2}^{(4)}\right\}=11$
When
$C_{1}^{(1)}=5+11=16$
$C_{1}^{(2)}=10+1(3)+7=20$
$C_{1}^{(3)}=10+1(3+2 \cdot 1)+5=20$
$C_{1}^{(4)}=15+1(3+2 \cdot 1+3 \cdot 2)=26$
then
$C_{1}=\min _{j=1, \cdots, 4} C_{1}^{(j)}=\min \left\{C_{1}^{(1)}, C_{1}^{(2)}, C_{1}^{(3)}, C_{1}^{(4)}\right\}=16$
So the optimal strategy is: First week order 3, second week order 4 third week order 0 , fourth week order 2 . Total cost is then 16.000 dollars.
A counter-example showing that it is not always optimal to order only when inventory level is zero.

Let $d_{1}=5$ and $d_{2}=5$.
Then ordering 10 the first day costs $15+1 \cdot 5=20$. Ordering 5 the first day and 5 the second day costs $10+10=20$. These are the only two alternatives for ordering when the inventory is at zero.
Ordering 6 the first day and 4 the second day costs $10+1 \cdot 1+5=16$ and is less expensive than the above alternative.
5. We need to keep track of if the sale went better or worse than expected last year. Let the state be

$$
s_{k}= \begin{cases}1 & \text { if the sale went better than expected the year before year } k \\ 0 & \text { if the sale went worse than expected the year before year } k\end{cases}
$$

Define the decisions

$$
x_{k}= \begin{cases}1 & \text { if Frasse decides to use a high starting price year } k \\ 0 & \text { if Frasse decides to use a low starting price year } k\end{cases}
$$

The transition probabilities are
$p_{i j}(x)=$ the probability of jumping from state i to j if we make decision x.

$$
\begin{aligned}
& P(x=1)=\left[\begin{array}{ll}
0.6 & 0.4 \\
0.5 & 0.5
\end{array}\right] \\
& P(x=0)=\left[\begin{array}{ll}
0.4 & 0.6 \\
0.2 & 0.8
\end{array}\right]
\end{aligned}
$$

Let the costs be the happiness and maximize instead of minimize.
Let $q_{i j}(x)=$ expected cost incurred when the state is in state i decision x is made and the system evolves to state j.

$$
\begin{aligned}
& Q(x=0)=\left[\begin{array}{cc}
1 / 2 & 1 \\
1 & 2
\end{array}\right] \\
& Q(x=1)=\left[\begin{array}{cc}
1 & 2 \\
1 / 2 & 3
\end{array}\right]
\end{aligned}
$$

Then the expected "cost" of making decision x_{k} at state s_{k} is $C_{s_{k}, x_{k}}=\sum_{j=0}^{3} q_{s_{k}, j} p_{s_{k}, j}\left(x_{k}\right)$.

$$
\begin{aligned}
& C_{00}=q_{00}(0) p_{00}(0)+q_{01}(0) p_{01}(0)=4 / 5 \\
& C_{01}=q_{00}(1) p_{00}(1)+q_{01}(1) p_{01}(1)=7 / 5 \\
& C_{10}=q_{10}(0) p_{10}(1)+q_{11}(0) p_{11}(0)=9 / 5 \\
& C_{11}=q_{10}(1) p_{10}(1)+q_{11}(1) p_{11}(1)=7 / 4
\end{aligned}
$$

Starting policy:
If $s_{k}=0$, make decision $x_{k}=1$.
If $s_{k}=1$, make decision $x_{k}=1$.
Use the policy iteration algorithm. Let $v_{1}=0$, then the value determination equations

$$
\begin{aligned}
& g+v_{0}=7 / 5+0.4 v_{0}+0.6 v_{1} \\
& g+v_{1}=7 / 4+0.2 v_{0}+0.8 v_{1}
\end{aligned}
$$

gives $g=14 / 9, v_{0}=-7 / 18$ and $v_{1}=0$.
To find out if it is optimal we do one step of the policy iteration.
For $i=0$

$$
\begin{gathered}
\max _{k=1,2}\left\{C_{0 k}+\left(p_{00}(k) v_{0}+p_{01}(k) v_{1}\right)\right\}= \\
=\max \left\{C_{00}+\left(p_{00}(0) v_{0}+p_{01}(0) v_{1}\right), C_{01}+\left(p_{00}(1) v_{0}+p_{01}(1) v_{1}\right)\right\} \\
=\max \{\underbrace{4 / 5+0.4 *(-7 / 18)}_{0.64}, \underbrace{8 / 5+0.6 *(-7 / 18)}_{1.37}\}=1.37 \text { for } k=1 .
\end{gathered}
$$

For $i=1$

$$
\begin{gathered}
\min _{k=0,1}\left\{C_{1 k}+\left(p_{10}(k) v_{0}+p_{11}(k) v_{1}\right)\right\}= \\
=\max \left\{C_{10}+\left(p_{10}(0) v_{0}+p_{11}(0) v_{1}\right), C_{11}+\left(p_{10}(1) v_{0}+p_{11}(1) v_{1}\right)\right\} \\
=\max \{\underbrace{9 / 5+0.2 *(-7 / 18)}_{1.72}, \underbrace{7 / 4+0.5 *(-7 / 18)}_{1.56},\}=1.72 \text { for } k=0 .
\end{gathered}
$$

The starting policy is not optimal, it is better to use a low starting price if the past year gave a higher than expected income.

