Suggested solutions for the exam in SF2863 Systems Engineering. January 11, 2016

Examiner: Per Enqvist,

1. Let n_{i} denote the level of action for feature i, where $i=1,2,3$..

Define functions f and g that we want to minimize, with the right properties. Frasse wants to minimze the environmental effects. Let $E_{i}\left(s_{i}\right)$ be defined by the table. Let $f\left(s_{1}, s_{2}, s_{3}\right)=\left[E_{e}\left(s_{1}\right)+E_{c}\left(s_{2}\right)+E_{m}\left(s_{3}\right)\right]$ Clearly f is a separable function, and decreasing.
Integer-convexity follows by considering $\Delta f_{i}(1)$, i.e.

Δf	ΔE_{E}	ΔE_{c}	ΔE_{m}
$s_{i}=0$	-5	-6	-3
$s_{i}=1$	-2	-3	-2
$s_{i}=2$	-1	-2	-1

which are increasing.
We want to minimize the cost, let $g\left(s_{1}, s_{2}, s_{3}\right)=c_{E}\left(s_{1}\right)+c_{c}\left(s_{2}\right)+c_{m}\left(s_{3}\right)$. Clearly g is a separable function, increasing, Integer-convexity follows by considering $\Delta c_{i}(1)$, i.e.

Δg	Δc_{E}	Δc_{c}	Δc_{m}
$s_{i}=0$	2	2	4
$s_{i}=1$	8	8	6
$s_{i}=2$	12	14	14

which are increasing.
We can then apply the Marginal Allocation algorithm.

$-\Delta f / \Delta g$	$\frac{-\Delta f_{1}}{\Delta g_{1}}$	$\frac{-\Delta f_{2}}{\Delta g_{2}}$	$\frac{-\Delta f_{3}}{\Delta g_{3}}$
$s_{i}=0$	$5 / 2=2.5$	$6 / 2=3$	$3 / 4=0.75$
$s_{i}=1$	$2 / 8=0.25$	$3 / 8=0.375$	$2 / 6=0.33$
$s_{i}=2$	$1 / 12=0.083$	$2 / 12=0.14$	$1 / 14=0.07$

The efficient allocations are therefore,
$S^{(0)}=\left(s_{1}=0, s_{2}=0, s_{3}=0\right), \quad f\left(s^{(0)}\right)=45, \quad g\left(s^{(0)}\right)=44$
$S^{(1)}=\left(s_{1}=0, s_{2}=1, s_{3}=0\right), \quad f\left(s^{(1)}\right)=39, \quad g\left(s^{(1)}\right)=46$
$S^{(2)}=\left(s_{1}=1, s_{2}=1, s_{3}=0\right), \quad f\left(s^{(2)}\right)=34, \quad g\left(s^{(2)}\right)=48$
$S^{(3)}=\left(s_{1}=1, s_{2}=1, s_{3}=1\right), \quad f\left(s^{(3)}\right)=31, \quad g\left(s^{(3)}\right)=52$
$S^{(4)}=\left(s_{1}=1, s_{2}=2, s_{3}=1\right), \quad f\left(s^{(3)}\right)=28, \quad g\left(s^{(3)}\right)=60$
2. The intensity of arrivals of patent applications (from outside) is $\lambda_{A}=10$ per month, the service station is a $M|M| 1$ system with service intensity $\mu_{A}=16$ per month.
Let λ_{B} be the arrival rate (with feedback) to the patent lawyer, and the patent office. From $\lambda_{B}=0.3 \lambda_{B}+\lambda_{A}$, we get $\lambda_{B}=100 / 7$.

The expected number of patent papers at the patent lawyer is $L_{A}=\rho_{A} /\left(1-\rho_{A}\right)=$ $100 / 12=25 / 3$ papers, and the expected time for a paper to pass through the patent lawyer (once) is $W_{A}=L_{A} / \lambda_{B}=7 / 12$ months, where $\rho_{A}=\lambda_{B} / \mu_{A}=100 / 7 / 16=$ $100 / 112=25 / 28$.
The expected number of patent papers at the patent office is $L_{B}=2 \rho_{B} /\left(1-\rho_{B}^{2}\right)=$ $35 / 12$ papers, where $\rho_{B}=\lambda_{B} / \mu_{B} / 2=5 / 7$, and $\mu_{B}=10$.
Expected total number of papers being handled is $L=L_{A}+L_{B}=25 / 3+35 / 12=$ 45/4. From global Little's formula we have that the average time for handling a patent paper is $W=L / \lambda_{A}=45 / 40$ months.
The probability that a patent paper is finally rejected is $0.2 /(0.5+0.2)=2 / 7$ and the probability that a patent paper is finally accepted is $0.5 /(0.5+0.2)=5 / 7$.
The average number N of times that a paper is handled by the patent lawyer, satisfies $N=1+0.3 N$, i.e., $N=1 / 0.7=10 / 7$, and the average time it is "in service" is $10 / 7\left(1 / \mu_{A}+1 / \mu_{B}\right)=13 / 56$, so the average total cost is $13 / 56 * 500 * 24=19500 / 7$ dollars.
3. Define the reduced problems

$$
\left(\mathcal{P}_{n}\right)\left[\begin{array}{ll}
\max _{x_{n}, \cdots, x_{N}} & \sum_{i=n}^{N} x_{i} p_{i} \\
\text { s.t } & \sum_{i=n}^{N} x_{i} \ell_{i} \leq s_{n} \\
& x_{i} \in\{0,1,2, \cdots\} \text { for } i=1, \cdots, N .
\end{array}\right]
$$

where $s_{n}=$ the length of the \log that is to be cut in pieces of lengths $\ell_{n}, \cdots, \ell_{N}$. The original problem is $\left(\mathcal{P}_{1}\right)$ starting at $s_{1}=L$.
Let $f_{n}^{*}\left(s_{n}\right)=$ the optimal value of the optimization problem $\left(\mathcal{P}_{n}\right)$, and let $f_{n}^{*}\left(s_{n}, z\right)=$ the optimal value of the optimization problem $\left(\mathcal{P}_{n}\right)$ when z pieces of length ℓ_{n} are cut and the rest of the log is cut optimally.
Then
$f_{n}^{*}\left(s_{n}\right)=\max _{z}\left\{f_{n}^{*}\left(s_{n}, z\right) \mid s_{n}-z \ell_{n} \geq 0\right\}=\max _{z}\left\{z p_{n}+f_{n}^{*}\left(s_{n}-z \ell_{n}\right) \mid s_{n}-z \ell_{n} \geq 0\right\}$.
We now solve it for $L=4$, that is we need to solve for $f_{n}^{*}\left(s_{n}\right)$ for $s_{n} \leq 4$ and $n=2,3,4$ to obtain $f_{1}^{*}(4)$.
Let $f_{5}^{*} \equiv 0$, then $f_{4}^{*}\left(s_{4}\right)=9$ if $s_{4}=4$ and 0 otherwise.
For $n=3, f_{3}^{*}\left(s_{3}\right)=\max _{z}\left\{7 z+f_{4}^{*}\left(s_{3}-3 z\right) \mid s_{3}-3 z \geq 0\right\}$

$$
\begin{array}{l|lllll}
s_{3} & 0 & 1 & 2 & 3 & 4 \\
\hline f_{3}^{*} & 0 & 0 & 0 & 7 & 9 \\
\hat{z} & 0 & 0 & 0 & 1 & 0
\end{array}
$$

For $n=2, f_{2}^{*}\left(s_{2}\right)=\max _{z}\left\{5 z+f_{3}^{*}\left(s_{2}-2 z\right) \mid s_{2}-2 z \geq 0\right\}$

$$
\begin{array}{l|llllc}
s_{2} & 0 & 1 & 2 & 3 & 4 \\
\hline f_{2}^{*} & 0 & 0 & 5 & 7 & 10 \\
\hat{z} & 0 & 0 & 0 & 0 & 2
\end{array}
$$

For $n=1, f_{1}^{*}(4)=\max _{z}\left\{2 z+f_{2}^{*}(4-z) \mid 4-z \geq 0\right\}$, so we compare

$$
0+f_{2}^{*}(4)=10, \quad 2+f_{2}^{*}(3)=9, \quad 4+f_{2}^{*}(2)=9, \quad 6+f_{2}^{*}(1)=6, \quad 8+f_{2}^{*}(0)=8,
$$

which acchieves the maximal value 10 by choosing $x_{1}=0$. Then $x_{2}=2, x_{3}=0$ and $x_{4}=0$ by backtracking the optimal solutions.
4. (a) We consider this as a markov decision process where we start with the policy to use standard fuel and standard repair.
Define the states

$$
s_{k}= \begin{cases}1 & \text { if the car is working at the beginning of week } k \\ 0 & \text { if the car is in repair at the beginning of week } k\end{cases}
$$

The state transition probabilities are

$$
P=\left[\begin{array}{ll}
p_{00} & p_{01} \\
p_{10} & p_{11}
\end{array}\right]=\left[\begin{array}{cc}
0.2 & 0.8 \\
0.05 & 0.95
\end{array}\right] .
$$

We need the expected costs for each step.
If the state $s_{k}=0$, then the expected immediate cost is $C_{0}=50$ dollars. If the state $s_{k}=1$, then the expected immediate cost is $C_{1}=q_{10} p_{10}+q_{11} p_{11}=$ $250 * 0.05+10 * 0.95=22$ dollars.
Let $v_{1}=0$. The value determination equations

$$
\begin{aligned}
& g+v_{0}=C_{0}+p_{00} v_{0}+p_{01} v_{1} \\
& g+v_{1}=C_{1}+p_{10} v_{0}+p_{11} v_{1}
\end{aligned}
$$

are

$$
\begin{gathered}
g+v_{0}=50+\left(0.2 v_{0}+0.8 * 0\right) \\
g+0=22+\left(0.05 v_{0}+0.95 * 0\right)
\end{gathered}
$$

gives $g=402 / 17, v_{0}=560 / 17$ and $v_{1}=0$.
The total cost is now $50 * 10 * g=500 * 402 / 17$.
(b) Now introduce the decision variables.

$$
x_{k}=\left\{\begin{array}{ll}
1 & \text { if standard fuel is used week } k \\
2 & \text { if alternative fuel is used week } k \\
3 & \text { if standard repair is used week } k \\
4 & \text { if Heathcliff repair is used week } k
\end{array},\right.
$$

where the decisions $x_{k}=1,2$ are available for states $s_{k}=1$ (working car) and the decisions $x_{k}=3,4$ are available for states $s_{k}=0$ (car in repair).
From (a) $p_{00}(3)=p_{00}=0.2, p_{01}(3)=p_{01}=0.8$ and $p_{10}(1)=p_{10}=0.05$, $p_{11}(1)=p_{11}=0.95$.
Now $p_{00}(4)=0.6, p_{01}(4)=0.4$ and $p_{10}(2)=0.1, p_{11}(2)=0.9$.
To determine the immediate cost, note that the cost should only depend on the current state and decision in that state, it is necessary to take the one-time cost for the repair as the car is repaired, that is when the state transfers from 0 to 1 .
Then

$$
\begin{array}{cc}
q_{10}(1)=50, \quad q_{11}(1)=10 & \text { (st. fuel) } \\
q_{10}(2)=50, \quad q_{11}(2)=5 & \text { (alt. fuel) } \\
q_{00}(3)=50, \quad q_{01}(3)=250 & \text { (st. repair) } \\
q_{00}(4)=50, \quad q_{01}(4)=100 & \text { (H. repair) }
\end{array}
$$

Now

$$
\begin{gathered}
C_{11}=q_{10}(1) p_{10}(1)+q_{11}(1) p_{11}(1)=50 * 0.05+10 * 0.99=12 \\
C_{12}=q_{10}(2) p_{10}(2)+q_{11}(2) p_{11}(2)=50 * 0.1+5 * 0.9=9.5 \\
C_{03}=q_{00}(3) p_{00}(3)+q_{01}(3) p_{01}(3)=50 * 0.2+250 * 0.8=210 \\
C_{04}=q_{00}(4) p_{00}(4)+q_{01}(4) p_{01}(4)=50 * 0.6+100 * 0.4=70
\end{gathered}
$$

Starting policy (from (a)):
If $s_{k}=0$, make decision $x_{k}=3$.
If $s_{k}=1$, make decision $x_{k}=1$.
Solving the value determination equations again with new immediate costs. Let $v_{1}=0$.

$$
\begin{aligned}
& g+v_{0}=C_{03}+p_{00}(3) v_{0}+p_{01}(3) v_{1} \\
& g+v_{1}=C_{11}+p_{10}(1) v_{0}+p_{11}(1) v_{1}
\end{aligned}
$$

are

$$
\begin{aligned}
& g+v_{0}=210+\left(0.2 v_{0}+0.8 * 0\right) \\
& g+0=12+\left(0.05 v_{0}+0.95 * 0\right)
\end{aligned}
$$

gives $g=402 / 17, v_{0}=3960 / 17$ and $v_{1}=0$. Note that changing the time for the one-time cost do not change the expected cost per time step g.
To find out if it is optimal we do one step of the policy iteration.
For $i=0$

$$
\begin{gathered}
\left.\min _{k=3,4}\left\{C_{0 k}+p_{00}(k) v_{0}+p_{01}(k) v_{1}\right)\right\}= \\
=\min \left\{C_{03}+\left(p_{00}(3) v_{0}+p_{01}(3) v_{1}\right), C_{04}+\left(p_{00}(4) v_{0}+p_{01}(4) v_{1}\right)\right\} \\
=\min \{\underbrace{210+(0.2 * 3960 / 17)}_{4362 / 17}, \underbrace{70+(0.6 * 3960 / 17)}_{3566 / 17}\}=3566 / 17 \text { for } k=4 .
\end{gathered}
$$

For $i=1$

$$
\begin{gathered}
\min _{k=1,2}\left\{C_{1 k}+\left(p_{10}(k) v_{0}+p_{11}(k) v_{1}\right)\right\}= \\
=\min \left\{C_{11}+\left(p_{10}(1) v_{1}+p_{11}(1) v_{1}\right), C_{12}+\left(p_{10}(2) v_{1}+p_{11}(2) v_{1}\right)\right\} \\
=\min \{\underbrace{12+(0.05 * 3960 / 17)}_{402 / 17}, \underbrace{9.5+(0.1 * 3960 / 17)}_{1115 / 34}\}=402 / 17 \text { for } k=1 .
\end{gathered}
$$

The starting policy is not optimal, to minimize the expected future cost he should change
Updated policy:
If $s_{k}=0$, make decision $x_{k}=4$.
If $s_{k}=1$, make decision $x_{k}=1$.

That is, use regular fuel and let Heathcliff repair the Mercedes.
Let $v_{1}=0$. The value determination equations

$$
\begin{aligned}
& g+v_{0}=C_{04}+p_{00}(4) v_{0}+p_{01}(4) v_{1} \\
& g+v_{1}=C_{11}+p_{10}(1) v_{0}+p_{11}(1) v_{1}
\end{aligned}
$$

are

$$
\begin{gathered}
g+v_{0}=70+\left(0.6 v_{0}+0.4 * 0\right) \\
g+0=12+\left(0.05 v_{0}+0.95 * 0\right)
\end{gathered}
$$

gives $g=166 / 9, v_{0}=1160 / 9$ and $v_{1}=0$.
The total cost is now $50 * 10 * g=500 * 166 / 9$.
5. (a) This can be modelled as an economic order quantity model, EOQ model.

The demand is $d=100$ kilos per day. The holding cost is $h=0.05$ dollars per kilo and day. The ordering cost is $K=100$ dollars.
Then the quantity to be ordered is

$$
\hat{Q}=\sqrt{\frac{2 d K}{h}}=200 \sqrt{10} \text { kilos. }
$$

He should order $200 \sqrt{10}$ kilos each time and he should order every $2 \sqrt{10}$ days.
(b) The total cost per cycle is $T_{C}=K+c Q+H$, where $Q=100 n, n$ an integer and H is the holding cost $5 n(n-1) / 2$, i.e.,

$$
K+c 100 n+5 n(n-1) / 2
$$

The length of a cycle is $Q / d=n$ days, so the total cost per time unit is then

$$
T(n)=\frac{K}{n}+100 c+\frac{5(n-1)}{2} .
$$

Now $\Delta T(n)=T(n+1)-T(n)=-\frac{K}{n(n+1)}+5 / 2$, and

$$
\begin{aligned}
\Delta^{2} T(n)=\Delta T(n+1)- & \Delta T(n)=-K\left(\frac{1}{(n+1)(n+2)}-\frac{1}{n(n+1)}\right)= \\
& =\frac{K}{n+1}\left(\frac{1}{n}-\frac{1}{n+2}\right) \geq 0
\end{aligned}
$$

which shows that T is integer-convex.
To find the optimal n note that $\Delta T(5)=-\frac{10}{3}+5 / 2 \leq 0 \leq \Delta T(6)=-\frac{100}{42}+5 / 2$, which tells us that $\hat{n}=6$ is optimal.

