
Solutions to the exam in SF2863, December 2009

Exercise 1.

Let p(k) = P (X = k), where X is the number of engines in the repair shop.

Since the repair shop is an M/M/1 system with λ = 0.3, µ = 0.5 and ρ = λ/µ = 0.6,
we have the formulas

p(0) = 1−ρ = 0.4, p(k) = ρkp(0) = 0.4 · 0.6 k and L = E[X] =
ρ

1−ρ
=

0.6

0.4
= 1.5 .

1.(a) E[X] = 1.5, according to above.

1.(b) P (X ≥ 2) = p(2) + p(3) + . . . = 1 − p(0) − p(1) = 1 − 0.4 − 0.24 = 0.36.

1.(c) The number of grounded aircrafts is given by (X−s)+, so the probability that there
is at least one grounded aircraft is P (X ≥ s + 1) = 1 − P (X ≤ s) = 1 − (p(0) + . . . + p(s)).

s = 0 ⇒ P (X ≥ s + 1) = 1 − p(0) = 0.6.
s = 1 ⇒ P (X ≥ s + 1) = 1 − p(0) − p(1) = 0.36.
s = 2 ⇒ P (X ≥ s + 1) = 1 − p(0) − p(1) − p(2) = 0.216.

1.(d) Now we are searching for E[(X−s)+], which we denote by EBO(s).

We have by definition that

EBO(s) = E[(X−s)+] = p(s + 1) + 2p(s + 2) + 3p(s + 3) + . . .

and thus EBO(s + 1) = p(s + 2) + 2p(s + 3) + 3p(s + 4) + . . .

From these expressions, it follows that
EBO(s) − EBO(s + 1) = p(s + 1) + p(s + 2) + p(s + 3) + . . . = 1 − (p(0) + . . . + p(s)).

Thus, EBO(s + 1) = EBO(s) − R(s), where R(s) = 1 − (p(0) + . . . + p(s)).

So we get that

EBO(0) = E[(X−0)+] = E[X] = 1.5.

EBO(1) = EBO(0) − R(0) = 1.5 − (1 − 0.4) = 0.9.

EBO(2) = EBO(1) − R(1) = 0.9 − (1 − 0.4 − 0.24) = 0.54.
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Exercise 2.

The arrival rates to the two facilities are obtained from the system

λA = 6 + 0.5λB and λB = 0.8λA, which gives that λA = 10 and λB = 8.

In the first situation, both A and B are M/M/1 with µA = 12 and µB = 10,
so that ρA = λA/µA = 5/6 < 1 and ρB = λB/µB = 4/5 < 1.

The average number of customers in facility A becomes L
(1)
A =

ρA

1 − ρA
= 5,

while the average number of customers in facility B becomes L
(1)
B =

ρB

1 − ρB
= 4,

so that the average number of customers in the system becomes L
(1)
A + L

(1)
B = 9.

2.(a)
If facility A is changed to M/M/2, then ρA = λA/(2µA) = 5/12 < 1, and then

the average number of customers in facility A becomes L
(2)
A =

2ρA

1 − ρ2
A

=
120

119
≈ 1,

so that the average number of customers in the system becomes L
(2)
A + L

(1)
B ≈ 5.

If instead facility B is changed to M/M/2, then ρB = λB/(2µB) = 4/10 < 1, and

then the average number of customers in facility B becomes L
(2)
B =

2ρB

1 − ρ2
B

=
20

21
≈ 1,

so that the average number of customers in the system becomes L
(1)
A + L

(2)
B ≈ 6.

Thus, the optimal place for the third server is in facility A.

2.(b)
If there are two servers in each facility, then the average number of customers

in the system becomes L
(2)
A + L

(2)
B =

120

119
+

20

21
≈ 2.

Since L
(3)
A + L

(1)
B > L

(1)
B = 4, and L

(1)
A + L

(3)
B > L

(1)
A = 5,

it is certainly better with 2+2 servers than with 3+1 or 1+3.

2.(c)
Let WA denote the expected remaining time in the system for a customer who
comes to facility A, and let WB denote the expected remaining time in the
system for a customer who comes to facility B. Then

WA = VA + 0.8WB and WB = VB + 0.5WA, where VA =
LA

λA
and VB =

LB

λB
,

which gives that WA =
VA + 0.8VB

0.6
=

LA + LB

6
.

Since each new customer who arrives to the system first go to facility A,
the expected time in the system for an arriving customer is precisely WA.

But since WA = 1
6 (LA + LB), minimizing WA is equivalent to minimizing LA + LB !

Thus, the conclusions from (a) and (b) are unchanged.
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Exercise 3.

We will apply the marginal allocation algorithm. First we identify the functions f and g:

f(s) =
4

∑

j=1

cj

sj + 1
=

4
∑

j=1

fj(sj), g(s) =
4

∑

j=1

sj =
4

∑

j=1

gj(sj),

where fj(sj) =
cj

sj + 1
and gj(sj) = sj.

Clearly, f is a decreasing separable function. Since cj/(1 + x) is a convex function for x > 0,
f is integer-convex. Further, g is obviously an increasing integer-convex separable function.
If the functions fj(sj) are evaluated for some reasonable values, the following table is obtained:
k f1(k) f2(k) f3(k) f4(k)

0 18
0+1 = 18 30

0+1 = 30 48
0+1 = 48 66

0+1 = 66

1 18
1+1 = 9 30

1+1 = 15 48
1+1 = 24 66

1+1 = 33

2 18
2+1 = 6 30

2+1 = 10 48
2+1 = 16 66

2+1 = 22

3 18
3+1 = 4.5 30

3+1 = 7.5 48
3+1 = 12 66

3+1 = 16.5

Then it is easy to determine the marginal quotients −∆fj(k)/∆gj(k) = −∆fj(k):

k −∆f1(k) −∆f2(k) −∆f3(k) −∆f4(k)

0 9 15 24 33

1 3 5 8 11

2 1.5 2.5 4 5.5

We can order the elements in this table:

k −∆f1(k)
1 −∆f2(k)

1 −∆f3(k)
1 −∆f4(k)

1

0 5 3 2 1

1 6 4

2 7

The marginal allocation algorithm starts with s(0) = (s
(0)
1 , s

(0)
2 , s

(0)
3 , s

(0)
4 ) = (0, 0, 0, 0),

and the generated efficient points are
s(1) = (0, 0, 0, 1),
s(2) = (0, 0, 1, 1),
s(3) = (0, 1, 1, 1),
s(4) = (0, 1, 1, 2),
s(5) = (1, 1, 1, 2),
s(6) = (1, 1, 2, 2),
s(7) = (1, 1, 2, 3).

Since g(s(7)) = 7, it is well known from the theory of marginal allocation that the
point s(7) is an optimal solution to the problem: minimize f(s) subject to g(s) ≤ 7.

The 7 additional consultants should thus be allocated as 1, 1, 2, 3 to the respective jobs,
which means that the 11 consultants should be allocated as 2, 2, 3, 4.
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Exercise 4.

Since the inventory is immediately filled when it becomes empty, we get the following state
diagram, where λ = 5.

N1 2

λ

λ λ λ

The corresponding balance equations πQ = 0 (jumps out = jumps in) for obtaining the
stationary distribution become

π1λ = π2λ, π2λ = π3λ, . . . , πN−1λ = πNλ, πNλ = π1λ, together with π1 + · · · + πN = 1.

The unique solution of these equations is πj = 1/N for all j = 1, . . . ,N , and the average level

of the inventory becomes
N

∑

j=1

j πj =
1

N

N
∑

j=1

j =
1

N
·
N(N + 1)

2
=

N + 1

2
.

N

T

The expected number of jumps per day is λ. Each N :th jump corresponds to a replenishment
of the inventory, so the expected number of replenishments per day is λ/N .

This gives the following natural objective function (average cost per day):

C(N) =
Kλ

N
+

h(N + 1)

2
, where K = 1000 and h = 1.

N should be an integer, but we first ignore this and consider N as a continuous variable.
Then we can use calculus and obtain

C ′(N) = −
Kλ

N2
+

h

2
, and C ′′(N) =

2Kλ

N3
> 0. Thus, C(N) is strictly convex for all N > 0.

C ′(N) = 0 gives N2 =
2Kλ

h
= 10000, so that N̂ = 100.

Since N̂ is an integer, it is the optimal solution.
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Exercise 5.

States: G = Good, B = Bad.
Decisions: S = Standard overhaul, E = Extended overhaul.
Transistion probabilities:
pGG(E) = 0.8, pGB(E) = 0.2, pBG(E) = 0.8, pBB(E) = 0.2,
pGG(S) = 0.6, pGB(S) = 0.4, pBG(S) = 0.6, pBB(S) = 0.4.

Expected immediate cost for different decisions in different states:
CGS = 1000 + pGB(S) · 5000 = 1000 + 0.4 · 5000 = 3000,
CGE = 3000 + pGB(E) · 5000 = 3000 + 0.2 · 5000 = 4000,
CBS = 10000 + pBB(S) · 5000 = 10000 + 0.4 · 5000 = 12000,
CBE = 14000 + pBB(E) · 5000 = 14000 + 0.2 · 5000 = 15000,

(5.a):

Let V
(n)
i = the minimal expected remaining cost if the system is in state i by the end of a

week and there are n more weeks to go. We get the recursive equations

V
(n)
G = min{ CGS + pGG(S)V

(n−1)
G + pGB(S)V

(n−1)
B , CGE + pGG(E)V

(n−1)
G + pGB(E)V

(n−1)
B },

V
(n)
B = min{ CBS +pBG(S)V

(n−1)
G +pBB(S)V

(n−1)
B , CBE +pBG(E)V

(n−1)
G +pBB(E)V

(n−1)
B },

with the boundary condition V
(0)
G = V

(0)
B = 0. This gives, for n = 1,

V
(1)
G = min{ CGS , CGE } = min{ 3000 , 4000 } = 3000,

V
(1)
B = min{ CBS , CBE } = min{ 12000 , 15000 } = 12000,

so the optimal decisions if only one week remains are dG = S and dB = S.

Next, for n = 2, we get

V
(2)
G = min{ 3000 + 0.6 · 3000 + 0.4 · 12000 , 4000 + 0.8 · 3000 + 0.2 · 12000 } =

= min{ 9600 , 8800 } = 8800,

V
(2)
B = min{ 12000 + 0.6 · 3000 + 0.4 · 12000 , 15000 + 0.8 · 3000 + 0.2 · 12000 } =

= min{ 18600 , 19800 } = 18600,

so the optimal decisions if two week remains are dG = E and dB = S,
which in words becomes: Make Extended overall if the system is Good,

and Standard overhaul if the system is Bad.

(5.b):
We should start with the policy dG = S and dB = S, so we must calculate the
three numbers g, vG and vB , corresponding to this policy, from the system
vB = 0,
g + vG = CGS + pGG(S) vG + pGB(S) vB ,
g + vB = CBS + pBG(S) vG + pBB(S) vB ,
which becomes
vB = 0,
g + vG = 3000 + 0.6 vG + 0.4 vB ,
g + vB = 12000 + 0.6 vG + 0.4 vB ,
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which can be simplified to
vB = 0,
g + 0.4 vG = 3000,
g − 0.6 vG = 12000,
with the unique solution g = 6600, vG = −9000, vB = 0.

The next step in the algorithm is to check if
g + vG = min{ CGS + pGG(S) vG + pGB(S) vB , CGE + pGG(E) vG + pGB(E) vB }, and
g + vB = min{ CBS + pBG(S) vG + pBB(S) vB , CBE + pBG(E) vG + pBB(E) vB }.

First, is g + vG = min{ CGS + pGG(S) vG + pGB(S) vB , CGE + pGG(E) vG + pGB(E) vB } ?
The left hand side is 6600 − 9000 = −2400, while the right hand side is
min{ 3000 + 0.6 · (−9000) , 4000 + 0.8 · (−9000) } = min{ −2400 ,−3200} = −3200.
Thus, the decision dG = S should be changed to dG = E.

Next, is g + vB = min{ CBS + pBG(S) vG + pBB(S) vB , CBE + pBG(E) vG + pBB(E) vB } ?
The left hand side is 6600 + 0 = 6600, while the right hand side is
min{ 12000 + 0.6 · (−9000) , 15000 + 0.8 · (−9000) } = min{ 6600 , 7800} = 6600.
Thus, the decision dB = S should be kept.

Our current policy is now dG = E and dB = S, so we must calculate the
three numbers g, vG and vB , corresponding to this policy, from the system
vB = 0,
g + vG = CGE + pGG(E) vG + pGB(E) vB ,
g + vB = CBS + pBG(S) vG + pBB(S) vB ,
which becomes
vB = 0,
g + vG = 4000 + 0.8 vG + 0.2 vB ,
g + vB = 12000 + 0.6 vG + 0.4 vB ,
which can be simplified to
vB = 0,
g + 0.2 vG = 4000,
g − 0.6 vG = 12000,
with the unique solution g = 6000, vG = −10000, vB = 0.

The next step in the algorithm is to check if
g + vG = min{ CGS + pGG(S) vG + pGB(S) vB , CGE + pGG(E) vG + pGB(E) vB }, and
g + vB = min{ CBS + pBG(S) vG + pBB(S) vB , CBE + pBG(E) vG + pBB(E) vB }.

First, is g + vG = min{ CGS + pGG(S) vG + pGB(S) vB , CGE + pGG(E) vG + pGB(E) vB } ?
The left hand side is 6000 − 10000 = −4000, while the right hand side is
min{ 3000 + 0.6 · (−10000) , 4000 + 0.8 · (−10000) } = min{ −3000 ,−4000} = −4000.
Thus, the decision dG = E should be kept.

Next, is g + vB = min{ CBS + pBG(S) vG + pBB(S) vB , CBE + pBG(E) vG + pBB(E) vB } ?
The left hand side is 6000 + 0 = 6000, while the right hand side is
min{ 12000 + 0.6 · (−10000) , 15000 + 0.8 · (−10000) } = min{ 6000 , 7000} = 6000.
Thus, the decision dB = S should be kept.

The conclusion is that the policy dG = E and dB = S is optimal.
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5.(c)

The four possible long-run policies are
Ra, in which dG = S and dB = S,
Rb, in which dG = S and dB = E,
Rc, in which dG = E and dB = S,
Rd, in which dG = E and dB = E.

The transition matrices corresponding to these policies are

P a =

[

0.6 0.4

0.6 0.4

]

, P b =

[

0.6 0.4

0.8 0.2

]

, P c =

[

0.8 0.2

0.6 0.4

]

, P d =

[

0.8 0.2

0.8 0.2

]

.

The rowvector π = (πG, πB) with the stationary distribution for a strategy R
is obtained from the system π = πP , which can be written π(I − P ) = (0, 0)
where I is the unity matrix, together with πG + πB = 1.

First, we have that I − P a =

[

0.4 −0.4

−0.6 0.6

]

, so the equations πa(I − P a) = (0, 0) become

0.4πa
G = 0.6πa

B , which together with πa
G + πa

B = 1 gives that πa = (πa
G, πa

B) = (0.6, 0.4).

Note that the two equations in πa(I − P a) = (0, 0) are equivalent.

Next, we have that I − P b =

[

0.4 −0.4

−0.8 0.8

]

, so the equations πb(I − P b) = (0, 0) become

0.4πb
G = 0.8πb

B , which together with πb
G + πb

B = 1 gives that πb = (πb
G, πb

B) = (2/3, 1/3).

Note that the two equations in πb(I − P b) = (0, 0) are equivalent.

Next, we have that I − P c =

[

0.2 −0.2

−0.6 0.6

]

, so the equations πc(I − P c) = (0, 0) become

0.2πc
G = 0.6πc

B , which together with πc
G + πc

B = 1 gives that πc = (πc
G, πc

B) = (0.75, 0.25).

Note that the two equations in πc(I − P c) = (0, 0) are equivalent.

Finally, we have that I − P d =

[

0.2 −0.2

−0.8 0.8

]

, so the equations πd(I − P d) = (0, 0) become

0.2πd
G = 0.8πd

B , which together with πd
G + πd

B = 1 gives that πd = (πd
G, πd

B) = (0.8, 0.2).

Note that the two equations in πd(I − P d) = (0, 0) are equivalent.

The average cost per week for Ra is πa
GCGS + πa

BCBS = 0.6 · 3000 + 0.4 · 12000 = 6600.
The average cost per week for Rb is πb

GCGS + πb
BCBE = (2/3) · 3000 + (1/3) · 15000 = 7000.

The average cost per week for Rc is πc
GCGE + πc

BCBS = 0.75 · 4000 + 0.25 · 12000 = 6000.
The average cost per week for Rd is πd

GCGE + πd
BCBE = 0.8 · 4000 + 0.2 · 15000 = 6200.

Again, the conclusion is that the policy Rc is optimal: Make Extended overall if the system
is Good, and Standard overhaul if the system is Bad.
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