Solutions to the exam in SF2863, December 2009

Exercise 1.
Let p(k) = P(X = k), where X is the number of engines in the repair shop.

Since the repair shop is an M /M /1 system with A = 0.3, x = 0.5 and p = \/u = 0.6,
we have the formulas

0.6
p(0) =1—p =104, p(k)=p"p(0)=0.4-0.6F and L =E[X]= Tpp =o1- 13
1.(a) E[X] = 1.5, according to above.
1.(b) P(X >2) =p(2) +p(3) +... =1 —p(0) —p(1) =1 — 0.4 — 0.24 = 0.36.

1.(c) The number of grounded aircrafts is given by (X —s)T, so the probability that there
is at least one grounded aircraft is P(X > s4+1)=1—-P(X <s)=1—(p(0) + ...+ p(s)).

s=0=P(X>s+1)=1—p(0) = 0.6.
s=1=PX>s+1)=1-p(0) —p(1l) =0.36.
s=2=PX >s+1)=1-p(0) —p(1l) —p(2) = 0.216.

1.(d) Now we are searching for E[(X —s)™], which we denote by EBO(s).
We have by definition that

EBO(s) = E[(X—s5)T] =p(s+1) +2p(s +2) + 3p(s +3) + ...

and thus EBO(s+1) =p(s+2)+2p(s+3) +3p(s+4) + ...

From these expressions, it follows that
EBO(s) —EBO(s+ 1) =p(s+1)+p(s+2)+p(s+3)+...=1—(p(0) + ...+ p(s)).

Thus, EBO(s + 1) = EBO(s) — R(s), where R(s) =1 — (p(0) + ...+ p(s)).
So we get that

EBO(0) = E[(X-0)"] = E[X] = 1.5.

EBO(1) = EBO(0) — R(0) = 1.5 — (1 —0.4) = 0.9.

EBO(2) = EBO(1) — R(1) = 0.9 — (1 — 0.4 — 0.24) = 0.54.



Exercise 2.
The arrival rates to the two facilities are obtained from the system
Aa =6+ 0.5\ and Ap = 0.8\4, which gives that A4 =10 and Ap =38.
In the first situation, both A and B are M /M /1 with 4 = 12 and pp = 10,
so that pa = Aa/pua =5/6 <1 and pp =Ag/up=4/5 < 1.

1—pa

while the average number of customers in facility B becomes Lg) =1 PB_ _
— PB

so that the average number of customers in the system becomes Lg) + Lg) =9.

2.(a)
If facility A is changed to M/M/2, then pa = Aa/(214) = 5/12 < 1, and then

2 120
the average number of customers in facility A becomes Lf) =1 pA2 =119 ~ 1
e

so that the average number of customers in the system becomes Lf) + Lg) ~ 5.
If instead facility B is changed to M /M /2, then pp = Ap/(2up) =4/10 < 1, and
@ _ _2p8 _ 20
B 1—p3 21

so that the average number of customers in the system becomes LS) + Lg) ~ 6.

The average number of customers in facility A becomes qu1 )

)

then the average number of customers in facility B becomes L 1,

Thus, the optimal place for the third server is in facility A.

2.(b)

If there are two servers in each facility, then the average number of customers
120 20

in the system becomes Lf) + L¥® — ot 31 ~

Since L + LW > 1) =4 and 1§ + 19 > 1Y) =5,
it is certainly better with 2+2 servers than with 341 or 143.

2.(c)

Let W4 denote the expected remaining time in the system for a customer who
comes to facility A, and let Wp denote the expected remaining time in the
system for a customer who comes to facility B. Then

L L
Wa=Vs+08Wg and Wg = Vg + 0.5 Wy, where V4 = A—A and Vg = A_B
A B
. L L
which gives that W4 = Va1 08Vp Y B
0.6 6
Since each new customer who arrives to the system first go to facility A,

the expected time in the system for an arriving customer is precisely Wy.

But since W4 = %(L A+ Lp), minimizing Wy is equivalent to minimizing L + Lp!

Thus, the conclusions from (a) and (b) are unchanged.



Exercise 3.

We will apply the marginal allocation algorithm. First we identify the functions f and g:

4
_ ¢j
f(S)—jZISJH

where f;(s;) = and g;(s;) = s;j.

¢
sj+1
Clearly, f is a decreasing separable function. Since ¢;/(1 + ) is a convex function for z > 0,
f is integer-convex. Further, g is obviously an increasing integer-convex separable function.

If the functions f;(s;) are evaluated for some reasonable values, the following table is obtained:

k fi(k) fa(k) f3(k) fa(k)
0 or =18 | 25 =30 | g5y =48 | 55 =66
1| 2% =9 | £25=15 | & =2] & =33
2| #5=6 | 25 =10 | 2 =16 | 25 =22
B3| ar =45 | 25 =75 575 =12| £ =165
Then it is easy to determine the marginal quotients —Af;(k)/Ag;(k) = —Af;(k):
k| —Afi(k ‘ —Afa(k) ‘ —Afs(k) ‘ —Afa(k) ‘
0 9 15 24 33
1 3 5 8 11
2 1.5 2.5 4 5.5

We can order the elements in this table:
k _Afi(k) _Afi(k) ‘ _Afal‘(k) _Afzi(k)

0
! [6]
2

The marginal allocation algorithm starts with s(© = (sgo), sgo), séo), sflo)) = (0,0,0,0),
and the generated efficient points are
st =(0,0,0,1),

s =(0,0,1,1),
s® =(0,1,1,1),
s® =(0,1,1,2),
s®) = (1,1,1,2),
s =(1,1,2,2),
s = (1,1,2,3)

s an optlmal solution to the problem: minimize f(s) subject to g(s) < 7.

The 7 additional consultants should thus be allocated as 1,1, 2,3 to the respective jobs,
which means that the 11 consultants should be allocated as 2,2, 3, 4.



Exercise 4.

Since the inventory is immediately filled when it becomes empty, we get the following state
diagram, where A = 5.

A A A

The corresponding balance equations 7@ = 0 (jumps out = jumps in) for obtaining the
stationary distribution become

TIA = Mo\, oA = T3\, ... , TN_1A = TNA, TNA = T A, together with 71 + -+ + 7y = 1.
The unique solution of these equations is 7; = 1/N for all j = 1,..., N, and the average level
N N
. 1 . 1 N(N+1) N+1
fth i t b y = — = — . — .
of the inventory becomes Z Jm; N Z J N 5 5
7j=1 7j=1
N d

The expected number of jumps per day is A\. Each N:th jump corresponds to a replenishment
of the inventory, so the expected number of replenishments per day is A/N.

This gives the following natural objective function (average cost per day):
K\ n h(N +1)
N 2

N should be an integer, but we first ignore this and consider N as a continuous variable.

Then we can use calculus and obtain

KX h . 2K\
—W—F?and C (N): N3

C(N) , where K = 1000 and h = 1.

C'(N) = > 0. Thus, C(N) is strictly convex for all N > 0.

2K\

C'(N) =0 gives N? = = 10000, so that N = 100.

Since N is an integer, it is the optimal solution.



Exercise 5.

States: G = Good, B = Bad.

Decisions: S = Standard overhaul, £ = Extended overhaul.

Transistion probabilities:

peG(E) =038, pep(E) =0.2, ppa(E) =08, ppp(E)=0.2,
pca(S) = 0.6, pep(S) =04, ppa(S) =0.6, ppp(S)=0.4.

Expected immediate cost for different decisions in different states:
Cas = 1000 + pgp(S) - 5000 = 1000 + 0.4 - 5000 = 3000,

Car = 3000 + pgp(E) - 5000 = 3000 + 0.2 - 5000 = 4000,

Cps = 10000 + ppp(S) - 5000 = 10000 + 0.4 - 5000 = 12000,

Cpr = 14000 + ppp(E) - 5000 = 14000 + 0.2 - 5000 = 15000,

(5.a):
Let Vi(n) = the minimal expected remaining cost if the system is in state ¢ by the end of a
week and there are n more weeks to go. We get the recursive equations

Ve = min{ Cos +pac(S)VE 4 pen(S)VE' ™ . CantpacE)VS ™ +pen(B)VE ™},
VY = min{ Cps +pBG(S)VC(:n_l)+pBB(S)VJén_I) , CBE +pBG(E)VC(;n_1)+pBB(E)VE(;n_l) b
with the boundary condition VC(;O) = Véo) = 0. This gives, for n =1,

Vc(:l) = min{ Cgs , Cgr } = min{ 3000, 4000 } = 3000,
V" = min{ Cps, Cpr} = min{ 12000 , 15000} = 12000,
so the optimal decisions if only one week remains are dg = .S and dp = S.

Next, for n = 2, we get

VG(Q) = min{ 3000 + 0.6 - 3000 + 0.4 - 12000 , 4000 + 0.8 - 3000 + 0.2 - 12000 } =
= min{ 9600 , 8800 } = 8800,

Vg) = min{ 12000 + 0.6 - 3000 4 0.4 - 12000 , 15000 + 0.8 - 3000 + 0.2 - 12000 } =
= min{ 18600 , 19800 } = 18600,

so the optimal decisions if two week remains are dg = F and dg = 5,
which in words becomes: Make Extended overall if the system is Good,
and Standard overhaul if the system is Bad.

(5.b):

We should start with the policy dg = S and dp = 5, so we must calculate the
three numbers ¢, vg and vp, corresponding to this policy, from the system

vg =0,

g9 +ve = Cas +pca(S) va + pes(S) vB,

g +vp = Cps +ppc(S)ve + peB(S) vB,

which becomes

vg =0,

g +vg = 3000 + 0.6 vg + 0.4 v,

g+ v = 12000 + 0.6 vg + 0.4vp,



which can be simplified to

vg =0,

g+ 0.4vg = 3000,

g — 0.6 vg = 12000,

with the unique solution g = 6600, vg = —9000, vp = 0.

The next step in the algorithm is to check if
g +vg = min{ Cgs + paa(S)va + pas(S) v , Car + paa(E) v + pa(E)vp }, and
g +vp = min{ Cpgs + ppa(S)va + pr(S)ve, CBE + PBG(E)va + pBB(E)UB }.

First, is g + vg = min{ Cgs + pac(S) va + pas(S) v, Car + pac(E)va +pas(E)vp }?
The left hand side is 6600 — 9000 = —2400, while the right hand side is

min{ 3000 + 0.6 - (—9000), 4000 + 0.8 - (—9000) } = min{ —2400, —3200} = —3200.

Thus, the decision dg = S should be changed to dg = F.

Next, is g +vp = min{ Cpgs + ppa(S)va + pee(S)vE, CBE +PBG(E) VG + PBB(E) VB } 7
The left hand side is 6600 4+ 0 = 6600, while the right hand side is

min{ 12000 + 0.6 - (—9000), 15000 + 0.8 - (—9000) } = min{ 6600, 7800} = 6600.

Thus, the decision dp = S should be kept.

Our current policy is now dg = F and dp = S, so we must calculate the
three numbers g, vg and vp, corresponding to this policy, from the system
vg =0,

9+ v = Cge + pea(E)vg + pas(E) vs,

g +vp = Cps +ppa(S)ve + ppa(S) v,

which becomes

vg =0,

g +vg = 4000 + 0.8vg + 0.2vp,

g+ v = 12000 + 0.6 vg 4+ 0.4vp,

which can be simplified to

vg =0,

g+ 0.2vg = 4000,

g — 0.6 vg = 12000,

with the unique solution g = 6000, vg = —10000, v = 0.

The next step in the algorithm is to check if
g +vg = min{ Cgs + paa(S)va + pas(S) v , Car + paa(E) v + pa(E)vp }, and
g+ vp =min{ Cps + ppc(S) va + pr(S)vB, CBE + PBG(E)ve + PBB(E) VB }.

First, is g + vg = min{ Cgs + pcc(S) va + pas(S)ve, Car + pac(E)ve + pap(E)vp } 7
The left hand side is 6000 — 10000 = —4000, while the right hand side is

min{ 3000 + 0.6 - (—10000), 4000 + 0.8 - (—10000) } = min{ —3000, —4000} = —4000.
Thus, the decision dg = E should be kept.

Next, is g +vp = min{ Cpgs + ppa(S)va + pee(S)vE, CBE + PBG(E) VG + PBB(E) VB } 7
The left hand side is 6000 4+ 0 = 6000, while the right hand side is

min{ 12000 + 0.6 - (—10000), 15000 + 0.8 - (—10000) } = min{ 6000, 7000} = 6000.

Thus, the decision dp = S should be kept.

The conclusion is that the policy dg = E and dg = S is optimal.



5.(c)

The four possible long-run policies are
R, in which dg = S and dg = 5,

Rb, in which dg = S and dg = E

R¢, in which dg = F and dg = S,

R4, in which d¢ = F and dp = E

The transition matrices corresponding to these policies are
0.6 0.4 0.6 0.4 0.8 0.2
, P = , Pe= , Pl=
0.6 0.4 0.8 0.2 0.6 0.4
The rowvector m = (7, mp) with the stationary distribution for a strategy R

is obtained from the system 7 = 7P, which can be written (I — P) = (0,0)
where [ is the unity matrix, together with 7 + 7 = 1.

0.4 —-04
—06 0.6
0.47¢ = 0.6 1%, which together with 7 4+ 7% = 1 gives that 7 = (7%, 7%) = (0.6, 0.4).

0.8 0.2
0.8 0.2

Po =

First, we have that I — P* =

] , so the equations 7%(I — P?®) = (0,0) become

Note that the two equations in 7%(I — P*) = (0,0) are equivalent.

04 —-04
-0.8 038
0.4 7% = 0.8 %, which together with 72 + 7% = 1 gives that 7° = (7%, 7%) = (2/3, 1/3).

Next, we have that I — pb =

] so the equations 7°(I — P?) = (0,0) become

Note that the two equations in 7°(I — P®) = (0,0) are equivalent.

0.2 —-0.2
—-06 0.6
0.27¢ = 0.6 1%, which together with 7¢, + 7% = 1 gives that 7¢ = (7§, %) = (0.75, 0.25).

Next, we have that I — P¢ =

] , so the equations 7¢(I — P¢) = (0,0) become

Note that the two equations in 7¢(I — P¢) = (0,0) are equivalent.
0.2

Finally, we have that I — P? =
—0.8

—0.2
08 ] , so the equations 7¢(I — P%) = (0,0) become

0.27¢ = 0.8 7%, which together with 74 + 7% = 1 gives that 7¢ = (74, 7%) = (0.8, 0.2).
Note that the two equations in 7¢(I — P%) = (0,0) are equivalent.

The average cost per week for R® is 7¢Cas + 1%Cps = 0.6 - 3000 + 0.4 - 12000 = 6600.
The average cost per week for R? is 7%Cqs + 75Cpr = (2/3) - 3000 + (1/3) - 15000 = 7000.
The average cost per week for R is 7¢,Cqr + n5Cps = 0.75 - 4000 + 0.25 - 12000 = 6000.
The average cost per week for R%is WéOGE + ﬂdBCBE = 0.8 4000 + 0.2 - 15000 = 6200.

Again, the conclusion is that the policy R¢ is optimal: Make Extended overall if the system
is Good, and Standard overhaul if the system is Bad.



