## Solutions to the exam in SF2863, December 2009

## Exercise 1.

Let $p(k)=P(X=k)$, where $X$ is the number of engines in the repair shop.
Since the repair shop is an $M / M / 1$ system with $\lambda=0.3, \mu=0.5$ and $\rho=\lambda / \mu=0.6$, we have the formulas

$$
p(0)=1-\rho=0.4, \quad p(k)=\rho^{k} p(0)=0.4 \cdot 0.6^{k} \text { and } L=\mathrm{E}[X]=\frac{\rho}{1-\rho}=\frac{0.6}{0.4}=1.5 .
$$

1.(a) $\mathrm{E}[X]=1.5$, according to above.
1.(b) $P(X \geq 2)=p(2)+p(3)+\ldots=1-p(0)-p(1)=1-0.4-0.24=0.36$.
1.(c) The number of grounded aircrafts is given by $(X-s)^{+}$, so the probability that there is at least one grounded aircraft is $P(X \geq s+1)=1-P(X \leq s)=1-(p(0)+\ldots+p(s))$.
$s=0 \Rightarrow P(X \geq s+1)=1-p(0)=0.6$.
$s=1 \Rightarrow P(X \geq s+1)=1-p(0)-p(1)=0.36$.
$s=2 \Rightarrow P(X \geq s+1)=1-p(0)-p(1)-p(2)=0.216$.
1.(d) Now we are searching for $\mathrm{E}\left[(X-s)^{+}\right]$, which we denote by $\operatorname{EBO}(s)$.

We have by definition that
$\operatorname{EBO}(s)=\mathrm{E}\left[(X-s)^{+}\right]=p(s+1)+2 p(s+2)+3 p(s+3)+\ldots$
and thus $\operatorname{EBO}(s+1)=p(s+2)+2 p(s+3)+3 p(s+4)+\ldots$
From these expressions, it follows that
$\operatorname{EBO}(s)-\operatorname{EBO}(s+1)=p(s+1)+p(s+2)+p(s+3)+\ldots=1-(p(0)+\ldots+p(s))$.
Thus, $\operatorname{EBO}(s+1)=\operatorname{EBO}(s)-R(s)$, where $R(s)=1-(p(0)+\ldots+p(s))$.
So we get that
$\mathrm{EBO}(0)=\mathrm{E}\left[(X-0)^{+}\right]=\mathrm{E}[X]=1.5$.
$\operatorname{EBO}(1)=\operatorname{EBO}(0)-R(0)=1.5-(1-0.4)=0.9$.
$\operatorname{EBO}(2)=\mathrm{EBO}(1)-R(1)=0.9-(1-0.4-0.24)=0.54$.

## Exercise 2.

The arrival rates to the two facilities are obtained from the system
$\lambda_{A}=6+0.5 \lambda_{B}$ and $\lambda_{B}=0.8 \lambda_{A}$, which gives that $\lambda_{A}=10$ and $\lambda_{B}=8$.
In the first situation, both $A$ and $B$ are $M / M / 1$ with $\mu_{A}=12$ and $\mu_{B}=10$, so that $\rho_{A}=\lambda_{A} / \mu_{A}=5 / 6<1$ and $\rho_{B}=\lambda_{B} / \mu_{B}=4 / 5<1$.
The average number of customers in facility A becomes $L_{A}^{(1)}=\frac{\rho_{A}}{1-\rho_{A}}=5$, while the average number of customers in facility B becomes $L_{B}^{(1)}=\frac{\rho_{B}}{1-\rho_{B}}=4$, so that the average number of customers in the system becomes $L_{A}^{(1)}+L_{B}^{(1)}=9$.

## 2.(a)

If facility $A$ is changed to $M / M / 2$, then $\rho_{A}=\lambda_{A} /\left(2 \mu_{A}\right)=5 / 12<1$, and then the average number of customers in facility A becomes $L_{A}^{(2)}=\frac{2 \rho_{A}}{1-\rho_{A}^{2}}=\frac{120}{119} \approx 1$, so that the average number of customers in the system becomes $L_{A}^{(2)}+L_{B}^{(1)} \approx 5$.
If instead facility $B$ is changed to $M / M / 2$, then $\rho_{B}=\lambda_{B} /\left(2 \mu_{B}\right)=4 / 10<1$, and then the average number of customers in facility B becomes $L_{B}^{(2)}=\frac{2 \rho_{B}}{1-\rho_{B}^{2}}=\frac{20}{21} \approx 1$, so that the average number of customers in the system becomes $L_{A}^{(1)}+L_{B}^{(2)} \approx 6$.
Thus, the optimal place for the third server is in facility A.
2.(b)

If there are two servers in each facility, then the average number of customers in the system becomes $L_{A}^{(2)}+L_{B}^{(2)}=\frac{120}{119}+\frac{20}{21} \approx 2$.
Since $L_{A}^{(3)}+L_{B}^{(1)}>L_{B}^{(1)}=4$, and $L_{A}^{(1)}+L_{B}^{(3)}>L_{A}^{(1)}=5$,
it is certainly better with $2+2$ servers than with $3+1$ or $1+3$.

## 2.(c)

Let $W_{A}$ denote the expected remaining time in the system for a customer who comes to facility $A$, and let $W_{B}$ denote the expected remaining time in the system for a customer who comes to facility $B$. Then $W_{A}=V_{A}+0.8 W_{B}$ and $W_{B}=V_{B}+0.5 W_{A}$, where $V_{A}=\frac{L_{A}}{\lambda_{A}}$ and $V_{B}=\frac{L_{B}}{\lambda_{B}}$,
which gives that $W_{A}=\frac{V_{A}+0.8 V_{B}}{0.6}=\frac{L_{A}+L_{B}}{6}$.
Since each new customer who arrives to the system first go to facility $A$, the expected time in the system for an arriving customer is precisely $W_{A}$.
But since $W_{A}=\frac{1}{6}\left(L_{A}+L_{B}\right)$, minimizing $W_{A}$ is equivalent to minimizing $L_{A}+L_{B}$ !
Thus, the conclusions from (a) and (b) are unchanged.

## Exercise 3.

We will apply the marginal allocation algorithm. First we identify the functions $f$ and $g$ :

$$
f(s)=\sum_{j=1}^{4} \frac{c_{j}}{s_{j}+1}=\sum_{j=1}^{4} f_{j}\left(s_{j}\right), \quad g(s)=\sum_{j=1}^{4} s_{j}=\sum_{j=1}^{4} g_{j}\left(s_{j}\right),
$$

where $f_{j}\left(s_{j}\right)=\frac{c_{j}}{s_{j}+1}$ and $g_{j}\left(s_{j}\right)=s_{j}$.
Clearly, $f$ is a decreasing separable function. Since $c_{j} /(1+x)$ is a convex function for $x>0$, $f$ is integer-convex. Further, $g$ is obviously an increasing integer-convex separable function. If the functions $f_{j}\left(s_{j}\right)$ are evaluated for some reasonable values, the following table is obtained:

| k | $f_{1}(k)$ | $f_{2}(k)$ | $f_{3}(k)$ | $f_{4}(k)$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | $\frac{18}{0+1}=18$ | $\frac{30}{0+1}=30$ | $\frac{48}{0+1}=48$ | $\frac{66}{0+1}=66$ |
| 1 | $\frac{18}{1+1}=9$ | $\frac{30}{1+1}=15$ | $\frac{48}{1+1}=24$ | $\frac{66}{1+1}=33$ |
| 2 | $\frac{18}{2+1}=6$ | $\frac{30}{2+1}=10$ | $\frac{48}{2+1}=16$ | $\frac{66}{2+1}=22$ |
| 3 | $\frac{18}{3+1}=4.5$ | $\frac{30}{3+1}=7.5$ | $\frac{48}{3+1}=12$ | $\frac{66}{3+1}=16.5$ |

Then it is easy to determine the marginal quotients $-\Delta f_{j}(k) / \Delta g_{j}(k)=-\Delta f_{j}(k)$ :

| k | $-\Delta f_{1}(k)$ | $-\Delta f_{2}(k)$ | $-\Delta f_{3}(k)$ | $-\Delta f_{4}(k)$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 9 | 15 | 24 | 33 |
| 1 | 3 | 5 | 8 | 11 |
| 2 | 1.5 | 2.5 | 4 | 5.5 |

We can order the elements in this table:

| k | $-\frac{\Delta f_{1}(k)}{1}$ | $-\frac{\Delta f_{2}(k)}{1}$ | $-\frac{\Delta f_{3}(k)}{1}$ | $-\frac{\Delta f_{4}(k)}{1}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 5 | 3 | 2 | 1 |
| 1 |  |  | 6 | 4 |
| 2 |  |  |  | 7 |

The marginal allocation algorithm starts with $s^{(0)}=\left(s_{1}^{(0)}, s_{2}^{(0)}, s_{3}^{(0)}, s_{4}^{(0)}\right)=(0,0,0,0)$, and the generated efficient points are
$s^{(1)}=(0,0,0,1)$,
$s^{(2)}=(0,0,1,1)$,
$s^{(3)}=(0,1,1,1)$,
$s^{(4)}=(0,1,1,2)$,
$s^{(5)}=(1,1,1,2)$,
$s^{(6)}=(1,1,2,2)$,
$s^{(7)}=(1,1,2,3)$.
Since $g\left(s^{(7)}\right)=7$, it is well known from the theory of marginal allocation that the point $s^{(7)}$ is an optimal solution to the problem: minimize $f(s)$ subject to $g(s) \leq 7$.
The 7 additional consultants should thus be allocated as $1,1,2,3$ to the respective jobs, which means that the 11 consultants should be allocated as $2,2,3,4$.

## Exercise 4.

Since the inventory is immediately filled when it becomes empty, we get the following state diagram, where $\lambda=5$.


The corresponding balance equations $\pi Q=0$ (jumps out $=$ jumps in) for obtaining the stationary distribution become
$\pi_{1} \lambda=\pi_{2} \lambda, \pi_{2} \lambda=\pi_{3} \lambda, \ldots, \pi_{N-1} \lambda=\pi_{N} \lambda, \pi_{N} \lambda=\pi_{1} \lambda$, together with $\pi_{1}+\cdots+\pi_{N}=1$.
The unique solution of these equations is $\pi_{j}=1 / N$ for all $j=1, \ldots, N$, and the average level of the inventory becomes $\sum_{j=1}^{N} j \pi_{j}=\frac{1}{N} \sum_{j=1}^{N} j=\frac{1}{N} \cdot \frac{N(N+1)}{2}=\frac{N+1}{2}$.


The expected number of jumps per day is $\lambda$. Each $N$ :th jump corresponds to a replenishment of the inventory, so the expected number of replenishments per day is $\lambda / N$.
This gives the following natural objective function (average cost per day):
$C(N)=\frac{K \lambda}{N}+\frac{h(N+1)}{2}$, where $K=1000$ and $h=1$.
$N$ should be an integer, but we first ignore this and consider $N$ as a continuous variable. Then we can use calculus and obtain
$C^{\prime}(N)=-\frac{K \lambda}{N^{2}}+\frac{h}{2}$, and $C^{\prime \prime}(N)=\frac{2 K \lambda}{N^{3}}>0$. Thus, $C(N)$ is strictly convex for all $N>0$.
$C^{\prime}(N)=0$ gives $N^{2}=\frac{2 K \lambda}{h}=10000$, so that $\hat{N}=100$.
Since $\hat{N}$ is an integer, it is the optimal solution.

## Exercise 5.

States: $\quad G=$ Good, $B=$ Bad.
Decisions: $\quad S=$ Standard overhaul, $E=$ Extended overhaul.
Transistion probabilities:
$p_{G G}(E)=0.8, \quad p_{G B}(E)=0.2, \quad p_{B G}(E)=0.8, \quad p_{B B}(E)=0.2$, $p_{G G}(S)=0.6, \quad p_{G B}(S)=0.4, \quad p_{B G}(S)=0.6, \quad p_{B B}(S)=0.4$.
Expected immediate cost for different decisions in different states:
$C_{G S}=1000+p_{G B}(S) \cdot 5000=1000+0.4 \cdot 5000=3000$,
$C_{G E}=3000+p_{G B}(E) \cdot 5000=3000+0.2 \cdot 5000=4000$,
$C_{B S}=10000+p_{B B}(S) \cdot 5000=10000+0.4 \cdot 5000=12000$,
$C_{B E}=14000+p_{B B}(E) \cdot 5000=14000+0.2 \cdot 5000=15000$,
(5.a):

Let $V_{i}^{(n)}=$ the minimal expected remaining cost if the system is in state $i$ by the end of a week and there are $n$ more weeks to go. We get the recursive equations
$V_{G}^{(n)}=\min \left\{C_{G S}+p_{G G}(S) V_{G}^{(n-1)}+p_{G B}(S) V_{B}^{(n-1)}, C_{G E}+p_{G G}(E) V_{G}^{(n-1)}+p_{G B}(E) V_{B}^{(n-1)}\right\}$, $V_{B}^{(n)}=\min \left\{C_{B S}+p_{B G}(S) V_{G}^{(n-1)}+p_{B B}(S) V_{B}^{(n-1)}, C_{B E}+p_{B G}(E) V_{G}^{(n-1)}+p_{B B}(E) V_{B}^{(n-1)}\right\}$,
with the boundary condition $V_{G}^{(0)}=V_{B}^{(0)}=0$. This gives, for $n=1$,
$V_{G}^{(1)}=\min \left\{C_{G S}, C_{G E}\right\}=\min \{3000,4000\}=3000$,
$V_{B}^{(1)}=\min \left\{C_{B S}, C_{B E}\right\}=\min \{12000,15000\}=12000$,
so the optimal decisions if only one week remains are $d_{G}=S$ and $d_{B}=S$.
Next, for $n=2$, we get
$V_{G}^{(2)}=\min \{3000+0.6 \cdot 3000+0.4 \cdot 12000,4000+0.8 \cdot 3000+0.2 \cdot 12000\}=$
$=\min \{9600,8800\}=8800$,
$V_{B}^{(2)}=\min \{12000+0.6 \cdot 3000+0.4 \cdot 12000,15000+0.8 \cdot 3000+0.2 \cdot 12000\}=$
$=\min \{18600,19800\}=18600$,
so the optimal decisions if two week remains are $d_{G}=E$ and $d_{B}=S$, which in words becomes: Make Extended overall if the system is Good, and Standard overhaul if the system is Bad.

## (5.b):

We should start with the policy $d_{G}=S$ and $d_{B}=S$, so we must calculate the three numbers $g, v_{G}$ and $v_{B}$, corresponding to this policy, from the system
$v_{B}=0$,
$g+v_{G}=C_{G S}+p_{G G}(S) v_{G}+p_{G B}(S) v_{B}$,
$g+v_{B}=C_{B S}+p_{B G}(S) v_{G}+p_{B B}(S) v_{B}$,
which becomes
$v_{B}=0$,
$g+v_{G}=3000+0.6 v_{G}+0.4 v_{B}$,
$g+v_{B}=12000+0.6 v_{G}+0.4 v_{B}$,
which can be simplified to
$v_{B}=0$,
$g+0.4 v_{G}=3000$,
$g-0.6 v_{G}=12000$,
with the unique solution $g=6600, v_{G}=-9000, v_{B}=0$.
The next step in the algorithm is to check if
$g+v_{G}=\min \left\{C_{G S}+p_{G G}(S) v_{G}+p_{G B}(S) v_{B}, C_{G E}+p_{G G}(E) v_{G}+p_{G B}(E) v_{B}\right\}$, and $g+v_{B}=\min \left\{C_{B S}+p_{B G}(S) v_{G}+p_{B B}(S) v_{B}, C_{B E}+p_{B G}(E) v_{G}+p_{B B}(E) v_{B}\right\}$.
First, is $g+v_{G}=\min \left\{C_{G S}+p_{G G}(S) v_{G}+p_{G B}(S) v_{B}, C_{G E}+p_{G G}(E) v_{G}+p_{G B}(E) v_{B}\right\} ?$ The left hand side is $6600-9000=-2400$, while the right hand side is
$\min \{3000+0.6 \cdot(-9000), 4000+0.8 \cdot(-9000)\}=\min \{-2400,-3200\}=-3200$.
Thus, the decision $d_{G}=S$ should be changed to $d_{G}=E$.
Next, is $g+v_{B}=\min \left\{C_{B S}+p_{B G}(S) v_{G}+p_{B B}(S) v_{B}, C_{B E}+p_{B G}(E) v_{G}+p_{B B}(E) v_{B}\right\} ?$ The left hand side is $6600+0=6600$, while the right hand side is $\min \{12000+0.6 \cdot(-9000), 15000+0.8 \cdot(-9000)\}=\min \{6600,7800\}=6600$.
Thus, the decision $d_{B}=S$ should be kept.
Our current policy is now $d_{G}=E$ and $d_{B}=S$, so we must calculate the three numbers $g, v_{G}$ and $v_{B}$, corresponding to this policy, from the system
$v_{B}=0$,
$g+v_{G}=C_{G E}+p_{G G}(E) v_{G}+p_{G B}(E) v_{B}$,
$g+v_{B}=C_{B S}+p_{B G}(S) v_{G}+p_{B B}(S) v_{B}$,
which becomes
$v_{B}=0$,
$g+v_{G}=4000+0.8 v_{G}+0.2 v_{B}$,
$g+v_{B}=12000+0.6 v_{G}+0.4 v_{B}$,
which can be simplified to
$v_{B}=0$,
$g+0.2 v_{G}=4000$,
$g-0.6 v_{G}=12000$,
with the unique solution $g=6000, v_{G}=-10000, v_{B}=0$.
The next step in the algorithm is to check if
$g+v_{G}=\min \left\{C_{G S}+p_{G G}(S) v_{G}+p_{G B}(S) v_{B}, C_{G E}+p_{G G}(E) v_{G}+p_{G B}(E) v_{B}\right\}$, and $g+v_{B}=\min \left\{C_{B S}+p_{B G}(S) v_{G}+p_{B B}(S) v_{B}, C_{B E}+p_{B G}(E) v_{G}+p_{B B}(E) v_{B}\right\}$.

First, is $g+v_{G}=\min \left\{C_{G S}+p_{G G}(S) v_{G}+p_{G B}(S) v_{B}, C_{G E}+p_{G G}(E) v_{G}+p_{G B}(E) v_{B}\right\} ?$ The left hand side is $6000-10000=-4000$, while the right hand side is $\min \{3000+0.6 \cdot(-10000), 4000+0.8 \cdot(-10000)\}=\min \{-3000,-4000\}=-4000$.
Thus, the decision $d_{G}=E$ should be kept.
Next, is $g+v_{B}=\min \left\{C_{B S}+p_{B G}(S) v_{G}+p_{B B}(S) v_{B}, C_{B E}+p_{B G}(E) v_{G}+p_{B B}(E) v_{B}\right\} ?$
The left hand side is $6000+0=6000$, while the right hand side is $\min \{12000+0.6 \cdot(-10000), 15000+0.8 \cdot(-10000)\}=\min \{6000,7000\}=6000$.
Thus, the decision $d_{B}=S$ should be kept.
The conclusion is that the policy $d_{G}=E$ and $d_{B}=S$ is optimal.

## 5.(c)

The four possible long-run policies are
$R^{a}$, in which $d_{G}=S$ and $d_{B}=S$,
$R^{b}$, in which $d_{G}=S$ and $d_{B}=E$,
$R^{c}$, in which $d_{G}=E$ and $d_{B}=S$,
$R^{d}$, in which $d_{G}=E$ and $d_{B}=E$.
The transition matrices corresponding to these policies are
$P^{a}=\left[\begin{array}{ll}0.6 & 0.4 \\ 0.6 & 0.4\end{array}\right], P^{b}=\left[\begin{array}{ll}0.6 & 0.4 \\ 0.8 & 0.2\end{array}\right], P^{c}=\left[\begin{array}{ll}0.8 & 0.2 \\ 0.6 & 0.4\end{array}\right], P^{d}=\left[\begin{array}{ll}0.8 & 0.2 \\ 0.8 & 0.2\end{array}\right]$.
The rowvector $\pi=\left(\pi_{G}, \pi_{B}\right)$ with the stationary distribution for a strategy $R$ is obtained from the system $\pi=\pi P$, which can be written $\pi(I-P)=(0,0)$
where $I$ is the unity matrix, together with $\pi_{G}+\pi_{B}=1$.
First, we have that $I-P^{a}=\left[\begin{array}{rr}0.4 & -0.4 \\ -0.6 & 0.6\end{array}\right]$, so the equations $\pi^{a}\left(I-P^{a}\right)=(0,0)$ become $0.4 \pi_{G}^{a}=0.6 \pi_{B}^{a}$, which together with $\pi_{G}^{a}+\pi_{B}^{a}=1$ gives that $\pi^{a}=\left(\pi_{G}^{a}, \pi_{B}^{a}\right)=(0.6,0.4)$.
Note that the two equations in $\pi^{a}\left(I-P^{a}\right)=(0,0)$ are equivalent.
Next, we have that $I-P^{b}=\left[\begin{array}{rr}0.4 & -0.4 \\ -0.8 & 0.8\end{array}\right]$, so the equations $\pi^{b}\left(I-P^{b}\right)=(0,0)$ become $0.4 \pi_{G}^{b}=0.8 \pi_{B}^{b}$, which together with $\pi_{G}^{b}+\pi_{B}^{b}=1$ gives that $\pi^{b}=\left(\pi_{G}^{b}, \pi_{B}^{b}\right)=(2 / 3,1 / 3)$.
Note that the two equations in $\pi^{b}\left(I-P^{b}\right)=(0,0)$ are equivalent.
Next, we have that $I-P^{c}=\left[\begin{array}{rr}0.2 & -0.2 \\ -0.6 & 0.6\end{array}\right]$, so the equations $\pi^{c}\left(I-P^{c}\right)=(0,0)$ become
$0.2 \pi_{G}^{c}=0.6 \pi_{B}^{c}$, which together with $\pi_{G}^{c}+\pi_{B}^{c}=1$ gives that $\pi^{c}=\left(\pi_{G}^{c}, \pi_{B}^{c}\right)=(0.75,0.25)$.
Note that the two equations in $\pi^{c}\left(I-P^{c}\right)=(0,0)$ are equivalent.
Finally, we have that $I-P^{d}=\left[\begin{array}{rr}0.2 & -0.2 \\ -0.8 & 0.8\end{array}\right]$, so the equations $\pi^{d}\left(I-P^{d}\right)=(0,0)$ become $0.2 \pi_{G}^{d}=0.8 \pi_{B}^{d}$, which together with $\pi_{G}^{d}+\pi_{B}^{d}=1$ gives that $\pi^{d}=\left(\pi_{G}^{d}, \pi_{B}^{d}\right)=(0.8,0.2)$.
Note that the two equations in $\pi^{d}\left(I-P^{d}\right)=(0,0)$ are equivalent.
The average cost per week for $R^{a}$ is $\pi_{G}^{a} C_{G S}+\pi_{B}^{a} C_{B S}=0.6 \cdot 3000+0.4 \cdot 12000=6600$.
The average cost per week for $R^{b}$ is $\pi_{G}^{b} C_{G S}+\pi_{B}^{b} C_{B E}=(2 / 3) \cdot 3000+(1 / 3) \cdot 15000=7000$.
The average cost per week for $R^{c}$ is $\pi_{G}^{c} C_{G E}+\pi_{B}^{c} C_{B S}=0.75 \cdot 4000+0.25 \cdot 12000=6000$.
The average cost per week for $R^{d}$ is $\pi_{G}^{d} C_{G E}+\pi_{B}^{d} C_{B E}=0.8 \cdot 4000+0.2 \cdot 15000=6200$.
Again, the conclusion is that the policy $R^{c}$ is optimal: Make Extended overall if the system is Good, and Standard overhaul if the system is Bad.

