Solutions to the exam in SF2863, December 2009

Exercise 1.

Let p(k) = P(X = k), where X is the number of engines in the repair shop.

Since the repair shop is an M/M/1 system with $\lambda = 0.3$, $\mu = 0.5$ and $\rho = \lambda/\mu = 0.6$, we have the formulas

$$p(0) = 1 - \rho = 0.4, \quad p(k) = \rho^k p(0) = 0.4 \cdot 0.6^k \text{ and } L = \mathbb{E}[X] = \frac{\rho}{1 - \rho} = \frac{0.6}{0.4} = 1.5$$

1.(a) E[X] = 1.5, according to above.

1.(b) $P(X \ge 2) = p(2) + p(3) + \ldots = 1 - p(0) - p(1) = 1 - 0.4 - 0.24 = 0.36.$

1.(c) The number of grounded aircrafts is given by $(X-s)^+$, so the probability that there is at least one grounded aircraft is $P(X \ge s+1) = 1 - P(X \le s) = 1 - (p(0) + \ldots + p(s))$.

$$\begin{split} s &= 0 \Rightarrow P(X \ge s+1) = 1 - p(0) = 0.6. \\ s &= 1 \Rightarrow P(X \ge s+1) = 1 - p(0) - p(1) = 0.36. \\ s &= 2 \Rightarrow P(X \ge s+1) = 1 - p(0) - p(1) - p(2) = 0.216. \end{split}$$

1.(d) Now we are searching for $E[(X-s)^+]$, which we denote by EBO(s).

We have by definition that

 $EBO(s) = E[(X-s)^+] = p(s+1) + 2p(s+2) + 3p(s+3) + \dots$

and thus $EBO(s+1) = p(s+2) + 2p(s+3) + 3p(s+4) + \dots$

From these expressions, it follows that

 $EBO(s) - EBO(s+1) = p(s+1) + p(s+2) + p(s+3) + \ldots = 1 - (p(0) + \ldots + p(s)).$

Thus, EBO(s + 1) = EBO(s) - R(s), where R(s) = 1 - (p(0) + ... + p(s)).

So we get that

 $EBO(0) = E[(X-0)^+] = E[X] = 1.5.$ EBO(1) = EBO(0) - R(0) = 1.5 - (1 - 0.4) = 0.9.EBO(2) = EBO(1) - R(1) = 0.9 - (1 - 0.4 - 0.24) = 0.54.

Exercise 2.

The arrival rates to the two facilities are obtained from the system

 $\lambda_A = 6 + 0.5\lambda_B$ and $\lambda_B = 0.8\lambda_A$, which gives that $\lambda_A = 10$ and $\lambda_B = 8$. In the first situation, both A and B are M/M/1 with $\mu_A = 12$ and $\mu_B = 10$, so that $\rho_A = \lambda_A/\mu_A = 5/6 < 1$ and $\rho_B = \lambda_B/\mu_B = 4/5 < 1$.

The average number of customers in facility A becomes $L_A^{(1)} = \frac{\rho_A}{1 - \rho_A} = 5$, while the average number of customers in facility B becomes $L_B^{(1)} = \frac{\rho_B}{1 - \rho_B} = 4$, so that the average number of customers in the system becomes $L_A^{(1)} + L_B^{(1)} = 9$.

If facility A is changed to M/M/2, then $\rho_A = \lambda_A/(2\mu_A) = 5/12 < 1$, and then the average number of customers in facility A becomes $L_A^{(2)} = \frac{2\rho_A}{1-\rho_A^2} = \frac{120}{119} \approx 1$, so that the average number of customers in the system becomes $L_A^{(2)} + L_B^{(1)} \approx 5$. If instead facility B is changed to M/M/2, then $\rho_B = \lambda_B/(2\mu_B) = 4/10 < 1$, and then the average number of customers in facility B becomes $L_B^{(2)} = \frac{2\rho_B}{1-\rho_B^2} = \frac{20}{21} \approx 1$, so that the average number of customers in the system becomes $L_A^{(1)} + L_B^{(2)} \approx 6$. Thus, the optimal place for the third server is in facility A.

2.(b)

If there are two servers in each facility, then the average number of customers in the system becomes $L_A^{(2)} + L_B^{(2)} = \frac{120}{119} + \frac{20}{21} \approx 2.$

Since
$$L_A^{(3)} + L_B^{(1)} > L_B^{(1)} = 4$$
, and $L_A^{(1)} + L_B^{(3)} > L_A^{(1)} = 5$

it is certainly better with 2+2 servers than with 3+1 or 1+3.

2.(c)

Let W_A denote the expected remaining time in the system for a customer who comes to facility A, and let W_B denote the expected remaining time in the system for a customer who comes to facility B. Then

$$W_A = V_A + 0.8 W_B$$
 and $W_B = V_B + 0.5 W_A$, where $V_A = \frac{L_A}{\lambda_A}$ and $V_B = \frac{L_B}{\lambda_B}$,
which gives that $W_A = \frac{V_A + 0.8 V_B}{0.6} = \frac{L_A + L_B}{6}$.

Since each new customer who arrives to the system first go to facility A, the expected time in the system for an arriving customer is precisely W_A .

But since $W_A = \frac{1}{6}(L_A + L_B)$, minimizing W_A is equivalent to minimizing $L_A + L_B$! Thus, the conclusions from (a) and (b) are unchanged.

Exercise 3.

We will apply the marginal allocation algorithm. First we identify the functions f and g:

$$f(s) = \sum_{j=1}^{4} \frac{c_j}{s_j + 1} = \sum_{j=1}^{4} f_j(s_j), \quad g(s) = \sum_{j=1}^{4} s_j = \sum_{j=1}^{4} g_j(s_j),$$

where $f_j(s_j) = \frac{c_j}{s_j + 1}$ and $g_j(s_j) = s_j$.

Clearly, f is a decreasing separable function. Since $c_j/(1+x)$ is a convex function for x > 0, f is integer-convex. Further, g is obviously an increasing integer-convex separable function. If the functions $f_j(s_j)$ are evaluated for some reasonable values, the following table is obtained:

k	$f_1(k)$	$f_2(k)$	$f_3(k)$	$f_4(k)$
0	$\frac{18}{0+1} = 18$	$\frac{30}{0+1} = 30$	$\frac{48}{0+1} = 48$	$\frac{66}{0+1} = 66$
1	$\frac{18}{1+1} = 9$	$\frac{30}{1+1} = 15$	$\frac{48}{1+1} = 24$	$\frac{66}{1+1} = 33$
2	$\frac{18}{2+1} = 6$	$\frac{30}{2+1} = 10$	$\frac{48}{2+1} = 16$	$\frac{66}{2+1} = 22$
3	$\frac{18}{3+1} = 4.5$	$\frac{30}{3+1} = 7.5$	$\frac{48}{3+1} = 12$	$\frac{66}{3+1} = 16.5$

Then it is easy to determine the marginal quotients $-\Delta f_j(k)/\Delta g_j(k) = -\Delta f_j(k)$:

k	$-\Delta f_1(k)$	$-\Delta f_2(k)$	$-\Delta f_3(k)$	$-\Delta f_4(k)$
0	9	15	24	33
1	3	5	8	11
2	1.5	2.5	4	5.5

We can order the elements in this table:

k	$-\frac{\Delta f_1(k)}{1}$	$-\frac{\Delta f_2(k)}{1}$	$-\frac{\Delta f_3(k)}{1}$	$-\frac{\Delta f_4(k)}{1}$
0	5	3	2	1
1			6	4
2				7

The marginal allocation algorithm starts with $s^{(0)} = (s_1^{(0)}, s_2^{(0)}, s_3^{(0)}, s_4^{(0)}) = (0, 0, 0, 0)$, and the generated efficient points are

$$\begin{split} s^{(1)} &= (0,0,0,1), \\ s^{(2)} &= (0,0,1,1), \\ s^{(3)} &= (0,1,1,1), \\ s^{(4)} &= (0,1,1,2), \\ s^{(5)} &= (1,1,1,2), \\ s^{(6)} &= (1,1,2,2), \\ s^{(7)} &= (1,1,2,3). \end{split}$$

Since $g(s^{(7)}) = 7$, it is well known from the theory of marginal allocation that the point $s^{(7)}$ is an optimal solution to the problem: minimize f(s) subject to $g(s) \leq 7$.

The 7 additional consultants should thus be allocated as 1, 1, 2, 3 to the respective jobs, which means that the 11 consultants should be allocated as 2, 2, 3, 4.

Exercise 4.

Since the inventory is immediately filled when it becomes empty, we get the following state diagram, where $\lambda = 5$.

The corresponding balance equations $\pi Q = 0$ (jumps out = jumps in) for obtaining the stationary distribution become

 $\pi_1 \lambda = \pi_2 \lambda, \ \pi_2 \lambda = \pi_3 \lambda, \ \dots, \ \pi_{N-1} \lambda = \pi_N \lambda, \ \pi_N \lambda = \pi_1 \lambda, \text{ together with } \pi_1 + \dots + \pi_N = 1.$ The unique solution of these equations is $\pi_j = 1/N$ for all $j = 1, \ldots, N$, and the average level

of the inventory becomes $\sum_{j=1}^{N} j \pi_j = \frac{1}{N} \sum_{j=1}^{N} j = \frac{1}{N} \cdot \frac{N(N+1)}{2} = \frac{N+1}{2}.$

The expected number of jumps per day is λ . Each N:th jump corresponds to a replenishment of the inventory, so the expected number of replenishments per day is λ/N .

This gives the following natural objective function (average cost per day):

$$C(N) = \frac{K\lambda}{N} + \frac{h(N+1)}{2}$$
, where $K = 1000$ and $h = 1$.

N should be an integer, but we first ignore this and consider N as a continuous variable. Then we can use calculus and obtain

$$C'(N) = -\frac{K\lambda}{N^2} + \frac{h}{2}$$
, and $C''(N) = \frac{2K\lambda}{N^3} > 0$. Thus, $C(N)$ is strictly convex for all $N > 0$.
 $C'(N) = 0$ gives $N^2 = \frac{2K\lambda}{h} = 10000$, so that $\hat{N} = 100$.
Since \hat{N} is an integer, it is the optimal solution

Since N is an integer, it is the optimal solution.

Exercise 5.

States: G = Good, B = Bad.Decisions: S = Standard overhaul, E = Extended overhaul.Transistion probabilities: $p_{GG}(E) = 0.8, \ p_{GB}(E) = 0.2, \ p_{BG}(E) = 0.8, \ p_{BB}(E) = 0.2,$ $p_{GG}(S) = 0.6, \ p_{GB}(S) = 0.4, \ p_{BG}(S) = 0.6, \ p_{BB}(S) = 0.4.$

Expected immediate cost for different decisions in different states: $C_{GS} = 1000 + p_{GB}(S) \cdot 5000 = 1000 + 0.4 \cdot 5000 = 3000,$ $C_{GE} = 3000 + p_{GB}(E) \cdot 5000 = 3000 + 0.2 \cdot 5000 = 4000,$ $C_{BS} = 10000 + p_{BB}(S) \cdot 5000 = 10000 + 0.4 \cdot 5000 = 12000,$ $C_{BE} = 14000 + p_{BB}(E) \cdot 5000 = 14000 + 0.2 \cdot 5000 = 15000,$

(5.a):

Let $V_i^{(n)}$ = the minimal expected remaining cost if the system is in state *i* by the end of a week and there are *n* more weeks to go. We get the recursive equations

$$V_{G}^{(n)} = \min\{ C_{GS} + p_{GG}(S)V_{G}^{(n-1)} + p_{GB}(S)V_{B}^{(n-1)}, C_{GE} + p_{GG}(E)V_{G}^{(n-1)} + p_{GB}(E)V_{B}^{(n-1)} \}, V_{B}^{(n)} = \min\{ C_{BS} + p_{BG}(S)V_{G}^{(n-1)} + p_{BB}(S)V_{B}^{(n-1)}, C_{BE} + p_{BG}(E)V_{G}^{(n-1)} + p_{BB}(E)V_{B}^{(n-1)} \},$$

with the boundary condition $V_G^{(0)} = V_B^{(0)} = 0$. This gives, for n = 1,

 $V_G^{(1)} = \min\{ C_{GS}, C_{GE} \} = \min\{ 3000, 4000 \} = 3000,$ $V_B^{(1)} = \min\{ C_{BS}, C_{BE} \} = \min\{ 12000, 15000 \} = 12000,$ so the optimal decisions if only one week remains are $d_G = S$ and $d_B = S$.

Next, for n = 2, we get

 $V_G^{(2)} = \min\{ 3000 + 0.6 \cdot 3000 + 0.4 \cdot 12000 , 4000 + 0.8 \cdot 3000 + 0.2 \cdot 12000 \} = \min\{ 9600 , 8800 \} = 8800,$

 $V_B^{(2)} = \min\{12000 + 0.6 \cdot 3000 + 0.4 \cdot 12000, 15000 + 0.8 \cdot 3000 + 0.2 \cdot 12000\} = \min\{18600, 19800\} = 18600,$

so the optimal decisions if two week remains are $d_G = E$ and $d_B = S$, which in words becomes: Make Extended overall if the system is Good, and Standard overhaul if the system is Bad.

(5.b):

We should start with the policy $d_G = S$ and $d_B = S$, so we must calculate the three numbers g, v_G and v_B , corresponding to this policy, from the system $v_B = 0$, $g + v_G = C_{GS} + p_{GG}(S) v_G + p_{GB}(S) v_B$, $g + v_B = C_{BS} + p_{BG}(S) v_G + p_{BB}(S) v_B$, which becomes $v_B = 0$, $g + v_G = 3000 + 0.6 v_G + 0.4 v_B$, $g + v_B = 12000 + 0.6 v_G + 0.4 v_B$, which can be simplified to $v_B = 0,$ $g + 0.4 v_G = 3000,$ $q - 0.6 v_G = 12000,$ with the unique solution g = 6600, $v_G = -9000$, $v_B = 0$. The next step in the algorithm is to check if $g + v_G = \min\{ C_{GS} + p_{GG}(S) v_G + p_{GB}(S) v_B, C_{GE} + p_{GG}(E) v_G + p_{GB}(E) v_B \}, \text{ and}$ $g + v_B = \min\{ C_{BS} + p_{BG}(S) v_G + p_{BB}(S) v_B, C_{BE} + p_{BG}(E) v_G + p_{BB}(E) v_B \}.$ First, is $g + v_G = \min\{C_{GS} + p_{GG}(S)v_G + p_{GB}(S)v_B, C_{GE} + p_{GG}(E)v_G + p_{GB}(E)v_B\}?$ The left hand side is 6600 - 9000 = -2400, while the right hand side is $\min\{3000 + 0.6 \cdot (-9000), 4000 + 0.8 \cdot (-9000)\} = \min\{-2400, -3200\} = -3200.$ Thus, the decision $d_G = S$ should be changed to $d_G = E$. Next, is $g + v_B = \min\{ C_{BS} + p_{BG}(S) v_G + p_{BB}(S) v_B, C_{BE} + p_{BG}(E) v_G + p_{BB}(E) v_B \}$? The left hand side is 6600 + 0 = 6600, while the right hand side is $\min\{12000 + 0.6 \cdot (-9000), 15000 + 0.8 \cdot (-9000)\} = \min\{6600, 7800\} = 6600.$ Thus, the decision $d_B = S$ should be kept. Our current policy is now $d_G = E$ and $d_B = S$, so we must calculate the three numbers q, v_G and v_B , corresponding to this policy, from the system $v_B = 0,$ $g + v_G = C_{GE} + p_{GG}(E) v_G + p_{GB}(E) v_B,$ $g + v_B = C_{BS} + p_{BG}(S) v_G + p_{BB}(S) v_B,$ which becomes $v_B = 0$, $g + v_G = 4000 + 0.8 v_G + 0.2 v_B$ $q + v_B = 12000 + 0.6 v_G + 0.4 v_B$ which can be simplified to $v_B = 0,$ $g + 0.2 v_G = 4000,$ $g - 0.6 v_G = 12000,$ with the unique solution q = 6000, $v_G = -10000$, $v_B = 0$. The next step in the algorithm is to check if $g + v_G = \min\{ C_{GS} + p_{GG}(S) v_G + p_{GB}(S) v_B, C_{GE} + p_{GG}(E) v_G + p_{GB}(E) v_B \}, \text{ and}$ $g + v_B = \min\{ C_{BS} + p_{BG}(S) v_G + p_{BB}(S) v_B, C_{BE} + p_{BG}(E) v_G + p_{BB}(E) v_B \}.$ First, is $g + v_G = \min\{C_{GS} + p_{GG}(S)v_G + p_{GB}(S)v_B, C_{GE} + p_{GG}(E)v_G + p_{GB}(E)v_B\}?$ The left hand side is 6000 - 10000 = -4000, while the right hand side is $\min\{3000 + 0.6 \cdot (-10000), 4000 + 0.8 \cdot (-10000)\} = \min\{-3000, -4000\} = -4000.$ Thus, the decision $d_G = E$ should be kept. Next, is $g + v_B = \min\{C_{BS} + p_{BG}(S)v_G + p_{BB}(S)v_B, C_{BE} + p_{BG}(E)v_G + p_{BB}(E)v_B\}$? The left hand side is 6000 + 0 = 6000, while the right hand side is

 $\min\{12000 + 0.6 \cdot (-10000), 15000 + 0.8 \cdot (-10000)\} = \min\{6000, 7000\} = 6000.$ Thus, the decision $d_B = S$ should be kept.

The conclusion is that the policy $d_G = E$ and $d_B = S$ is optimal.

5.(c)

The four possible long-run policies are

 R^a , in which $d_G = S$ and $d_B = S$, R^b , in which $d_G = S$ and $d_B = E$, R^c , in which $d_G = E$ and $d_B = S$, R^d , in which $d_G = E$ and $d_B = E$.

The transition matrices corresponding to these policies are

$$P^{a} = \begin{bmatrix} 0.6 & 0.4 \\ 0.6 & 0.4 \end{bmatrix}, P^{b} = \begin{bmatrix} 0.6 & 0.4 \\ 0.8 & 0.2 \end{bmatrix}, P^{c} = \begin{bmatrix} 0.8 & 0.2 \\ 0.6 & 0.4 \end{bmatrix}, P^{d} = \begin{bmatrix} 0.8 & 0.2 \\ 0.8 & 0.2 \end{bmatrix}.$$

The rowvector $\pi = (\pi_G, \pi_B)$ with the stationary distribution for a strategy R is obtained from the system $\pi = \pi P$, which can be written $\pi(I - P) = (0, 0)$ where I is the unity matrix, together with $\pi_G + \pi_B = 1$.

First, we have that $I - P^a = \begin{bmatrix} 0.4 & -0.4 \\ -0.6 & 0.6 \end{bmatrix}$, so the equations $\pi^a(I - P^a) = (0, 0)$ become

 $0.4 \pi_G^a = 0.6 \pi_B^a$, which together with $\pi_G^a + \pi_B^a = 1$ gives that $\pi^a = (\pi_G^a, \pi_B^a) = (0.6, 0.4)$. Note that the two equations in $\pi^a (I - P^a) = (0, 0)$ are equivalent.

Next, we have that
$$I - P^b = \begin{bmatrix} 0.4 & -0.4 \\ -0.8 & 0.8 \end{bmatrix}$$
, so the equations $\pi^b(I - P^b) = (0, 0)$ become $0.4 \pi^b_G = 0.8 \pi^b_B$, which together with $\pi^b_G + \pi^b_B = 1$ gives that $\pi^b = (\pi^b_G, \pi^b_B) = (2/3, 1/3)$.

Note that the two equations in $\pi^b(I - P^b) = (0, 0)$ are equivalent.

Next, we have that $I - P^c = \begin{bmatrix} 0.2 & -0.2 \\ -0.6 & 0.6 \end{bmatrix}$, so the equations $\pi^c(I - P^c) = (0, 0)$ become $0.2 \pi_G^c = 0.6 \pi_B^c$, which together with $\pi_G^c + \pi_B^c = 1$ gives that $\pi^c = (\pi_G^c, \pi_B^c) = (0.75, 0.25)$. Note that the two equations in $\pi^c(I - P^c) = (0, 0)$ are equivalent.

Finally, we have that $I - P^d = \begin{bmatrix} 0.2 & -0.2 \\ -0.8 & 0.8 \end{bmatrix}$, so the equations $\pi^d(I - P^d) = (0, 0)$ become

 $0.2 \pi_G^d = 0.8 \pi_B^d$, which together with $\pi_G^d + \pi_B^d = 1$ gives that $\pi^d = (\pi_G^d, \pi_B^d) = (0.8, 0.2)$. Note that the two equations in $\pi^d (I - P^d) = (0, 0)$ are equivalent.

The average cost per week for R^a is $\pi^a_G C_{GS} + \pi^a_B C_{BS} = 0.6 \cdot 3000 + 0.4 \cdot 12000 = 6600$. The average cost per week for R^b is $\pi^a_G C_{GS} + \pi^a_B C_{BE} = (2/3) \cdot 3000 + (1/3) \cdot 15000 = 7000$. The average cost per week for R^c is $\pi^c_G C_{GE} + \pi^c_B C_{BS} = 0.75 \cdot 4000 + 0.25 \cdot 12000 = 6000$. The average cost per week for R^d is $\pi^d_G C_{GE} + \pi^d_B C_{BE} = 0.8 \cdot 4000 + 0.2 \cdot 15000 = 6200$.

Again, the conclusion is that the policy R^c is optimal: Make Extended overall if the system is Good, and Standard overhaul if the system is Bad.