Solutions to the exam in SF2863, June 2010

Exercise 1.

The arrival rates to the facilities are obtained from the system

$$\begin{split} \lambda_A &= 7 + 0.5 \lambda_C, \ \lambda_B = 0.5 \lambda_A, \ \lambda_C = 0.5 \lambda_B, \ \text{which gives that} \ \lambda_A = 8, \ \lambda_B = 4, \ \lambda_C = 2. \end{split}$$
All three facilities are M/M/1, with service rates $\ \mu_A = 12, \ \mu_B = 12, \ \mu_C = 12, \end{cases}$ so that $\ \rho_A &= \lambda_A/\mu_A = 8/12 < 1, \ \rho_B = \lambda_B/\mu_B = 4/12 < 1, \ \rho_C = \lambda_C/\mu_C = 2/12 < 1. \end{split}$

1.(a) The average number of customers in the system becomes

$$L_A + L_B + L_C = \frac{\rho_A}{1 - \rho_A} + \frac{\rho_B}{1 - \rho_B} + \frac{\rho_C}{1 - \rho_C} = 2 + 0.5 + 0.2 = 2.7.$$

1.(b) Let W_i denote the expected remaining time in the system for a customer who has just arrived to facility i, for i = A, B, C.

Then $W_A = V_A + 0.5 W_B$, $W_B = V_B + 0.5 W_C$, $W_C = V_C + 0.5 W_A$, where $V_A = \frac{L_A}{\lambda_A} = 1/4$, $V_B = \frac{L_B}{\lambda_B} = 1/8$, $V_C = \frac{L_C}{\lambda_C} = 1/10$, which gives that $W_A = \frac{54}{140}$, $W_B = \frac{38}{140}$, $W_C = \frac{41}{140}$. So the expected remaining time in the system for a customer who has just arrived to facility B is $W_B = \frac{38}{140}$.

1.(c) The expected remaining time in the system for a customer who has just started being served in facility B is $=\frac{1}{\mu_B} + 0.5 W_C = \frac{1}{12} + \frac{41}{280} = \frac{193}{840}$.

1.(d) Let N_i be the number of customers at facility i (at a random point in time). Then $P(N_i = k) = (1 - \rho_i)\rho_i^k$.

The probablity that there are equally number of customers in all three facilities is

$$\sum_{k=0}^{\infty} P(N_A = k, N_B = k, N_C = k) = \sum_{k=0}^{\infty} P(N_A = k) P(N_B = k) P(N_C = k) =$$
$$= (1 - \rho_A)(1 - \rho_B)(1 - \rho_C) \sum_{k=0}^{\infty} (\rho_A \rho_B \rho_C)^k = \frac{(1 - \rho_A)(1 - \rho_B)(1 - \rho_C)}{1 - \rho_A \rho_B \rho_C} = \frac{5}{26}.$$

Exercise 2.

We will apply the marginal allocation algorithm for the functions $f(\mathbf{x}) = \sum_{j=1}^{3} f_j(x_j)$ and $g(\mathbf{x}) = \sum_{j=1}^{3} g_j(x_j)$, where $f_j(x_j) = p_j^{x_j+1}$ and $g_j(x_j) = w_j(x_j+1)$. We have that $\Delta f_j(x_j) = f_j(x_j+1) - f_j(x_j) = p_j^{x_j+1}(p_j-1) < 0$ and $\Delta f_j(x_j+1) - \Delta f_j(x_j) = p_j^{x_j+1}(p_j-1)^2 > 0$, so that f_j is decreasing and integer-convex. Further, $\Delta g_j(x_j) = g_j(x_j+1) - g_j(x_j) = w_j > 0$ and $\Delta g_j(x_j+1) - \Delta g_j(x_j) = 0$, so that g_j is increasing and integer-convex.

The given data imply that $\Delta g_1(k) = 3$, $\Delta g_2(k) = 1$, $\Delta g_3(k) = 2$, for all k = 0, 1, 2, ...

Further, the data imply that				k	$f_1(k)$	f_2	(k)	$\int f_3(k$)		
				0	0.3	0).1	0.2			
				1	0.09	$\begin{array}{c} 0.01 \\ 0.001 \end{array}$		0.04 0.008			
				2	0.027						
					3	0.0081	0.0	0001	0.001	6	
which im	plies	that	k 0 1 2	$egin{array}{c c} -\Delta f_1 \\ 0.2 \\ 0.06 \\ 0.01 \end{array}$	$\frac{(k)}{1}$ $\frac{1}{63}$ 89	$ \begin{array}{c c} -\Delta f_2(\\ 0.09 \\ 0.009 \\ 0.000 \\ \end{array} $	(k) (k)	$\begin{array}{c} -\Delta \\ 0. \\ 0. \\ 0. \\ 0. \end{array}$	$f_3(k)$.16 032 0064		
so that	k	$-\Delta f_1(k)/\Delta g_1(k)$			-	$-\Delta f_2(k)/\Delta g_2(k)$			$-\Delta f_3(k)/\Delta g_3(k)$		
	0	0.07				0.09			0.08		
	1	0.021				0.009			0.016		
	2	0.0063				0.0009			0.0032		

We can order the elements in this last table, with the largest element first, etc.

k	$-\Delta f_1(k)/\Delta g_1(k)$	$-\Delta f_2(k)/\Delta g_2(k)$	$-\Delta f_3(k)/\Delta g_3(k)$
0	3	1	2
1	4	6	5

The marginal allocation algorithm starts with $\mathbf{x}^{(0)} = (0, 0, 0)$, and the generated efficient points and their weights become $\mathbf{x}^{(0)} = (0, 0, 0), \ g(\mathbf{x}^{(1)}) = 6,$ $\mathbf{x}^{(1)} = (0, 1, 0), \ g(\mathbf{x}^{(1)}) = 7,$ $\mathbf{x}^{(2)} = (0, 1, 1), \ g(\mathbf{x}^{(2)}) = 9,$ $\mathbf{x}^{(3)} = (1, 1, 1), \ g(\mathbf{x}^{(3)}) = 12,$ $\mathbf{x}^{(4)} = (2, 1, 1), \ g(\mathbf{x}^{(4)}) = 15.$ Exercise 3.

3.(a). When the two machines are identical, we need three states:

State 0 : Both machines are working.

State 1 : One machine is working.

State 2 : No machine is working.

The balance equations for the state probabilities P_j become

$$2\lambda P_0 = \mu P_1, \quad \lambda P_1 = \mu P_2, \quad P_0 + P_1 + P_2 = 1,$$

with the solution

$$P_0 = \frac{\mu^2}{\mu^2 + 2\mu\lambda + 2\lambda^2} , \quad P_1 = \frac{2\mu\lambda}{\mu^2 + 2\mu\lambda + 2\lambda^2} , \quad P_2 = \frac{2\lambda^2}{\mu^2 + 2\mu\lambda + 2\lambda^2} .$$

The quantities P_b and P_w , which were asked for, are given by $P_b = P_2$ and $P_w = P_0$.

3.(b). When the two machines are not identical, we need five states:

State 0 : Both machines are working.

State 1 : M_1 is under repair, M_2 is working.

State 2 : M_1 is working, M_2 is under repair.

State 3 : Both machines are broken, M_1 is under repair while M_2 is waiting for repair.

State 4 : Both machines are broken, M_2 is under repair while M_1 is waiting for repair.

The balance equations for the state probabilities π_j become

 $\begin{aligned} &(\lambda_1 + \lambda_2)\pi_0 = \mu_1 \pi_1 + \mu_2 \pi_2 ,\\ &(\mu_1 + \lambda_2)\pi_1 = \lambda_1 \pi_0 + \mu_2 \pi_4 ,\\ &(\lambda_1 + \mu_2)\pi_2 = \lambda_2 \pi_0 + \mu_1 \pi_3 ,\\ &\mu_1 \pi_3 = \lambda_2 \pi_1 ,\\ &\mu_2 \pi_4 = \lambda_1 \pi_2 ,\\ &\pi_0 + \pi_1 + \pi_2 + \pi_3 + \pi_4 = 1 . \end{aligned}$

The quantities P_b and P_w , which were asked for, are given by $P_b = \pi_3 + \pi_4$ and $P_w = \pi_0$.

3.(c). Now assume that $\mu_1 = \mu_2 = \mu = 1$ and $\lambda_1 = \lambda_2 = \lambda = 1$. Then the soultion in (a) becomes $P_0 = 0.2$, $P_1 = 0.4$, $P_2 = 0.4$, so that $P_b = 0.4$ and $P_w = 0.2$. The obvious guess for a solution in (b) is then obtained from $\pi_0 = P_0 = 0.2$, $\pi_1 + \pi_2 = P_1 = 0.4$, $\pi_3 + \pi_4 = P_2 = 0.4$, $\pi_1 = \pi_2$ and $\pi_3 = \pi_4$, which give that $\pi_1 = \pi_2 = \pi_3 = \pi_4 = \pi_5 = 0.2$.

It is easy to see that this solution satisfies the balance equations. Thus, again, $P_b = 0.2 + 0.2 = 0.4$ and $P_w = 0.2$.

Exercise 4.

The recursive equation become

$$V_k(x_k) = \min_{u_k} \{x_k^2 + u_k^2 + V_{k+1}(x_k + u_k)\}$$

with the boundary condition $V_3(x_3) = x_3^2$.

Application of this recursive equation for k = 2, k = 1 and k = 0 gives $\hat{u}_2 = -\frac{x_2}{2}, V_2(x_2) = \frac{3}{2}x_2^2, \ \hat{u}_1 = -\frac{3x_1}{5}, V_1(x_1) = \frac{8}{5}x_1^2, \ \hat{u}_0 = -\frac{8x_1}{13}, V_0(x_0) = \frac{21}{13}x_0^2.$ Since $x_0 = 13$, we get $x_0 = 13 \Rightarrow \hat{u}_0 = -8 \Rightarrow x_1 = 5 \Rightarrow \hat{u}_1 = -3 \Rightarrow x_2 = 2 \Rightarrow \hat{u}_2 = -1 \Rightarrow x_3 = 1.$ The total cost is $V_0(13) = \frac{21}{13}13^2 = 273.$ (Check: $x_0^2 + u_0^2 + x_1^2 + u_1^2 + x_2^2 + u_2^2 + x_3^2 = 13^2 + 8^2 + 5^2 + 3^2 + 2^2 + 1^2 + 1^2 = 273.$)

Exercise 5.

Let r(x) denote the expected revenue, let c(x) denote the cost, and let f(x) = r(x) - c(x) denote the expected profit (a given friday).

There are two cases, either x = 0 or $x \ge 1$. If x = 0 then r(x) = c(x) = f(x) = 0, which will later be compared with the best choice among all $x \ge 1$.

From now on, we will consider the case $x \ge 1$, i.e. $x \in \{1, 2, 3, ...\}$. Then the cost is given by c(x) = 50 + 10x.

5.(a) Here, the revenue is 100ξ if $\xi \le x$ and 100x if $\xi > x$.

Therefore, the expected revenue becomes

$$\begin{aligned} r(x) &= 100 \left(\sum_{k=1}^{x} k P(\xi = k) + x P(\xi \ge x + 1) \right). \end{aligned}$$
 Then $r(x+1) &= 100 \left(\sum_{k=1}^{x+1} k P(\xi = k) + (x+1) P(\xi \ge x + 2) \right), \end{aligned}$

which can be written equivalently as

$$r(x+1) = 100\left(\sum_{k=1}^{x} kP(\xi=k) + (x+1)P(\xi \ge x+1)\right).$$

From this, it immediately follows that

$$\Delta r(x) = r(x+1) - r(x) = 100P(\xi \ge x+1) = 100(1 - F_{\xi}(x)),$$

where $F_{\xi}(x) = P(\xi \le x)$ is the distribution function for ξ .
Since $\Delta c(x) = c(x+1) - c(x) = 10$ (when $x \ge 1$), we get that
 $\Delta f(x) = f(x+1) - f(x) = \Delta r(x) - \Delta c(x) = 100(1 - F_{\xi}(x)) - 10$
This gives us the following equivalences:

"x+1 is better than x" $\Leftrightarrow \Delta f(x) > 0 \Leftrightarrow F_{\xi}(x) < \frac{90}{100}$.

Since $P(\xi = 0) = 0$ and $P(\xi = k) = \frac{1}{2^k}$ for $k \ge 1$, the distribution function becomes as follows for $x \ge 1$: $F_{\xi}(x) = \sum_{k=1}^x \frac{1}{2^k} = 1 - \frac{1}{2^x}$, and thus "x+1 is better than x" $\Leftrightarrow 1 - \frac{1}{2^x} < \frac{90}{100} \Leftrightarrow 2^x < 10 \Leftrightarrow x \le 3$. From this we get that $f(1) < f(2) < f(3) < f(4) > f(5) > f(6) > \cdots$

so it follow that x = 4 is the best choice among all $x \ge 1$.

The formulas above give that f(4) = r(4) - c(4) = 187.5 - 90 = 97.5, which is better than f(0) = 0.

Thus, x = 4 is the best choice among all $x \ge 0$.

5.(b) Now, the revenue is 100ξ if $\xi \le x$ and 0 if $\xi > x$.

Therefore, the expected revenue becomes $r(x) = 100 \sum_{k=1}^{x} k P(\xi = k)$.

Then $r(x+1) = 100 \sum_{k=1}^{x+1} k P(\xi = k)$, from which it follows that

 $\Delta r(x) = r(x+1) - r(x) = 100(x+1)P(\xi = x+1) = \frac{100(x+1)}{2^{x+1}}.$

Since $\Delta c(x) = c(x+1) - c(x) = 10$ (when $x \ge 1$), we get that

$$\Delta f(x) = f(x+1) - f(x) = \Delta r(x) - \Delta c(x) = \frac{100(x+1)}{2^{x+1}} - 10.$$

This gives us the following equivalences:

"x+1 is better than x" $\Leftrightarrow \Delta f(x) > 0 \Leftrightarrow \frac{x+1}{2^{x+1}} > \frac{1}{10}$.

For $x = 1, 2, \ldots$, the left hand side in the last inequality becomes:

$$\frac{2}{4}, \frac{3}{8}, \frac{4}{16}, \frac{5}{32}, \frac{6}{64}, \frac{7}{128}, \dots$$

from which it follows that $\Delta f(x) > 0$ for x = 1, 2, 3, 4, while $\Delta f(x) < 0$ for $x \ge 5$. This implies that $f(1) < f(2) < f(3) < f(4) < f(5) > f(6) > f(7) > \cdots$

so it follow that x = 5 is the best choice among all $x \ge 1$.

The formulas above give that f(5) = r(5) - c(5) = 178.125 - 100 = 78.125, which is better than f(0) = 0.

Thus, x = 5 is the best choice among all $x \ge 0$.