Solutions to the exam in SF2863, June 2010

Exercise 1.

The arrival rates to the facilities are obtained from the system
$\lambda_{A}=7+0.5 \lambda_{C}, \lambda_{B}=0.5 \lambda_{A}, \lambda_{C}=0.5 \lambda_{B}$, which gives that $\lambda_{A}=8, \lambda_{B}=4, \lambda_{C}=2$.
All three facilities are $M / M / 1$, with service rates $\mu_{A}=12, \mu_{B}=12, \mu_{C}=12$,
so that $\rho_{A}=\lambda_{A} / \mu_{A}=8 / 12<1, \quad \rho_{B}=\lambda_{B} / \mu_{B}=4 / 12<1, \quad \rho_{C}=\lambda_{C} / \mu_{C}=2 / 12<1$.
1.(a) The average number of customers in the system becomes

$$
L_{A}+L_{B}+L_{C}=\frac{\rho_{A}}{1-\rho_{A}}+\frac{\rho_{B}}{1-\rho_{B}}+\frac{\rho_{C}}{1-\rho_{C}}=2+0.5+0.2=2.7 .
$$

1.(b) Let W_{i} denote the expected remaining time in the system for a customer who has just arrived to facility i, for $i=A, B, C$.

Then $W_{A}=V_{A}+0.5 W_{B}, W_{B}=V_{B}+0.5 W_{C}, W_{C}=V_{C}+0.5 W_{A}$,
where $V_{A}=\frac{L_{A}}{\lambda_{A}}=1 / 4, \quad V_{B}=\frac{L_{B}}{\lambda_{B}}=1 / 8, \quad V_{C}=\frac{L_{C}}{\lambda_{C}}=1 / 10$,
which gives that $W_{A}=\frac{54}{140}, W_{B}=\frac{38}{140}, W_{C}=\frac{41}{140}$.
So the expected remaining time in the system for a customer who has just arrived to facility B is $W_{B}=\frac{38}{140}$.
1.(c) The expected remaining time in the system for a customer who has just started being served in facility B is $=\frac{1}{\mu_{B}}+0.5 W_{C}=\frac{1}{12}+\frac{41}{280}=\frac{193}{840}$.
1.(d) Let N_{i} be the number of customers at facility i (at a random point in time).

Then $P\left(N_{i}=k\right)=\left(1-\rho_{i}\right) \rho_{i}^{k}$.
The probablity that there are equally number of customers in all three facilities is
$\sum_{k=0}^{\infty} P\left(N_{A}=k, N_{B}=k, N_{C}=k\right)=\sum_{k=0}^{\infty} P\left(N_{A}=k\right) P\left(N_{B}=k\right) P\left(N_{C}=k\right)=$
$=\left(1-\rho_{A}\right)\left(1-\rho_{B}\right)\left(1-\rho_{C}\right) \sum_{k=0}^{\infty}\left(\rho_{A} \rho_{B} \rho_{C}\right)^{k}=\frac{\left(1-\rho_{A}\right)\left(1-\rho_{B}\right)\left(1-\rho_{C}\right)}{1-\rho_{A} \rho_{B} \rho_{C}}=\frac{5}{26}$.

Exercise 2.

We will apply the marginal allocation algorithm for the functions $f(\mathbf{x})=\sum_{j=1}^{3} f_{j}\left(x_{j}\right)$ and $g(\mathbf{x})=\sum_{j=1}^{3} g_{j}\left(x_{j}\right)$, where $f_{j}\left(x_{j}\right)=p_{j}^{x_{j}+1}$ and $g_{j}\left(x_{j}\right)=w_{j}\left(x_{j}+1\right)$.
We have that $\Delta f_{j}\left(x_{j}\right)=f_{j}\left(x_{j}+1\right)-f_{j}\left(x_{j}\right)=p_{j}^{x_{j}+1}\left(p_{j}-1\right)<0$ and $\Delta f_{j}\left(x_{j}+1\right)-\Delta f_{j}\left(x_{j}\right)=p_{j}^{x_{j}+1}\left(p_{j}-1\right)^{2}>0$, so that f_{j} is decreasing and integer-convex.
Further, $\Delta g_{j}\left(x_{j}\right)=g_{j}\left(x_{j}+1\right)-g_{j}\left(x_{j}\right)=w_{j}>0$ and $\Delta g_{j}\left(x_{j}+1\right)-\Delta g_{j}\left(x_{j}\right)=0$, so that g_{j} is increasing and integer-convex.

The given data imply that $\Delta g_{1}(k)=3, \Delta g_{2}(k)=1, \Delta g_{3}(k)=2$, for all $k=0,1,2, \ldots$

	k	$f_{1}(k)$	$f_{2}(k)$	$f_{3}(k)$
Further, the data imply that	0	0.3	0.1	0.2
	1	0.09	0.01	0.04
	2	0.027	0.001	0.008
	3	0.0081	0.0001	0.0016

which implies that

k	$-\Delta f_{1}(k)$	$-\Delta f_{2}(k)$	$-\Delta f_{3}(k)$
0	0.21	0.09	0.16
1	0.063	0.009	0.032
2	0.0189	0.0009	0.0064

so that

k	$-\Delta f_{1}(k) / \Delta g_{1}(k)$	$-\Delta f_{2}(k) / \Delta g_{2}(k)$	$-\Delta f_{3}(k) / \Delta g_{3}(k)$
0	0.07	0.09	0.08
1	0.021	0.009	0.016
2	0.0063	0.0009	0.0032

We can order the elements in this last table, with the largest element first, etc.

k	$-\Delta f_{1}(k) / \Delta g_{1}(k)$	$-\Delta f_{2}(k) / \Delta g_{2}(k)$	$-\Delta f_{3}(k) / \Delta g_{3}(k)$
0	3	1	2
1	4	$\boxed{1}$	$\boxed{5}$

The marginal allocation algorithm starts with $\mathbf{x}^{(0)}=(0,0,0)$, and the generated efficient points and their weights become
$\mathbf{x}^{(0)}=(0,0,0), \quad g\left(\mathbf{x}^{(1)}\right)=6$,
$\mathbf{x}^{(1)}=(0,1,0), \quad g\left(\mathbf{x}^{(1)}\right)=7$,
$\mathbf{x}^{(2)}=(0,1,1), \quad g\left(\mathbf{x}^{(2)}\right)=9$,
$\mathbf{x}^{(3)}=(1,1,1), g\left(\mathbf{x}^{(3)}\right)=12$,
$\mathbf{x}^{(4)}=(2,1,1), \quad g\left(\mathbf{x}^{(4)}\right)=15$.

Exercise 3.

3.(a). When the two machines are identical, we need three states:

State 0 : Both machines are working.
State 1: One machine is working.
State 2 : No machine is working.
The balance equations for the state probabilities P_{j} become

$$
2 \lambda P_{0}=\mu P_{1}, \quad \lambda P_{1}=\mu P_{2}, \quad P_{0}+P_{1}+P_{2}=1,
$$

with the solution

$$
P_{0}=\frac{\mu^{2}}{\mu^{2}+2 \mu \lambda+2 \lambda^{2}}, \quad P_{1}=\frac{2 \mu \lambda}{\mu^{2}+2 \mu \lambda+2 \lambda^{2}}, \quad P_{2}=\frac{2 \lambda^{2}}{\mu^{2}+2 \mu \lambda+2 \lambda^{2}} .
$$

The quantities P_{b} and P_{w}, which were asked for, are given by $P_{b}=P_{2}$ and $P_{w}=P_{0}$.
3.(b). When the two machines are not identical, we need five states:

State 0 : Both machines are working.
State 1: M_{1} is under repair, M_{2} is working.
State 2: M_{1} is working, M_{2} is under repair.
State 3 : Both machines are broken, M_{1} is under repair while M_{2} is waiting for repair.
State 4: Both machines are broken, M_{2} is under repair while M_{1} is waiting for repair.
The balance equations for the state probabilities π_{j} become

$$
\begin{aligned}
& \left(\lambda_{1}+\lambda_{2}\right) \pi_{0}=\mu_{1} \pi_{1}+\mu_{2} \pi_{2}, \\
& \left(\mu_{1}+\lambda_{2}\right) \pi_{1}=\lambda_{1} \pi_{0}+\mu_{2} \pi_{4}, \\
& \left(\lambda_{1}+\mu_{2}\right) \pi_{2}=\lambda_{2} \pi_{0}+\mu_{1} \pi_{3}, \\
& \mu_{1} \pi_{3}=\lambda_{2} \pi_{1}, \\
& \mu_{2} \pi_{4}=\lambda_{1} \pi_{2}, \\
& \pi_{0}+\pi_{1}+\pi_{2}+\pi_{3}+\pi_{4}=1 .
\end{aligned}
$$

The quantities P_{b} and P_{w}, which were asked for, are given by $P_{b}=\pi_{3}+\pi_{4}$ and $P_{w}=\pi_{0}$.
3.(c). Now assume that $\mu_{1}=\mu_{2}=\mu=1$ and $\lambda_{1}=\lambda_{2}=\lambda=1$.

Then the soultion in (a) becomes $P_{0}=0.2, P_{1}=0.4, P_{2}=0.4$, so that $P_{b}=0.4$ and $P_{w}=0.2$.
The obvious guess for a solution in (b) is then obtained from
$\pi_{0}=P_{0}=0.2, \pi_{1}+\pi_{2}=P_{1}=0.4, \pi_{3}+\pi_{4}=P_{2}=0.4, \pi_{1}=\pi_{2}$ and $\pi_{3}=\pi_{4}$, which give that $\pi_{1}=\pi_{2}=\pi_{3}=\pi_{4}=\pi_{5}=0.2$.

It is easy to see that this solution satisfies the balance equations.
Thus, again, $P_{b}=0.2+0.2=0.4$ and $P_{w}=0.2$.

Exercise 4.

The recursive equation become

$$
V_{k}\left(x_{k}\right)=\min _{u_{k}}\left\{x_{k}^{2}+u_{k}^{2}+V_{k+1}\left(x_{k}+u_{k}\right)\right\}
$$

with the boundary condition $V_{3}\left(x_{3}\right)=x_{3}^{2}$.
Application of this recursive equation for $k=2, k=1$ and $k=0$ gives
$\hat{u}_{2}=-\frac{x_{2}}{2}, \quad V_{2}\left(x_{2}\right)=\frac{3}{2} x_{2}^{2}, \hat{u}_{1}=-\frac{3 x_{1}}{5}, \quad V_{1}\left(x_{1}\right)=\frac{8}{5} x_{1}^{2}, \hat{u}_{0}=-\frac{8 x_{1}}{13}, \quad V_{0}\left(x_{0}\right)=\frac{21}{13} x_{0}^{2}$.
Since $x_{0}=13$, we get
$x_{0}=13 \Rightarrow \hat{u}_{0}=-8 \Rightarrow x_{1}=5 \Rightarrow \hat{u}_{1}=-3 \Rightarrow x_{2}=2 \Rightarrow \hat{u}_{2}=-1 \Rightarrow x_{3}=1$.
The total cost is $V_{0}(13)=\frac{21}{13} 13^{2}=273$.
(Check: $x_{0}^{2}+u_{0}^{2}+x_{1}^{2}+u_{1}^{2}+x_{2}^{2}+u_{2}^{2}+x_{3}^{2}=13^{2}+8^{2}+5^{2}+3^{2}+2^{2}+1^{2}+1^{2}=273$.)

Exercise 5.

Let $r(x)$ denote the expected revenue, let $c(x)$ denote the cost, and let $f(x)=r(x)-c(x)$ denote the expected profit (a given friday).

There are two cases, either $x=0$ or $x \geq 1$.
If $x=0$ then $r(x)=c(x)=f(x)=0$, which will later be compared with the best choice among all $x \geq 1$.

From now on, we will consider the case $x \geq 1$, i.e. $x \in\{1,2,3, \ldots\}$. Then the cost is given by $c(x)=50+10 x$.
5.(a) Here, the revenue is 100ξ if $\xi \leq x$ and $100 x$ if $\xi>x$.

Therefore, the expected revenue becomes
$r(x)=100\left(\sum_{k=1}^{x} k P(\xi=k)+x P(\xi \geq x+1)\right)$.
Then $r(x+1)=100\left(\sum_{k=1}^{x+1} k P(\xi=k)+(x+1) P(\xi \geq x+2)\right)$,
which can be written equivalently as
$r(x+1)=100\left(\sum_{k=1}^{x} k P(\xi=k)+(x+1) P(\xi \geq x+1)\right)$.
From this, it immediately follows that
$\Delta r(x)=r(x+1)-r(x)=100 P(\xi \geq x+1)=100\left(1-F_{\xi}(x)\right)$,
where $F_{\xi}(x)=P(\xi \leq x)$ is the distribution function for ξ.
Since $\Delta c(x)=c(x+1)-c(x)=10$ (when $x \geq 1$), we get that
$\Delta f(x)=f(x+1)-f(x)=\Delta r(x)-\Delta c(x)=100\left(1-F_{\xi}(x)\right)-10$.
This gives us the following equivalences:
" $x+1$ is better than $x " \Leftrightarrow \Delta f(x)>0 \Leftrightarrow F_{\xi}(x)<\frac{90}{100}$.
Since $P(\xi=0)=0$ and $P(\xi=k)=\frac{1}{2^{k}}$ for $k \geq 1$, the distribution function
becomes as follows for $x \geq 1$: $F_{\xi}(x)=\sum_{k=1}^{x} \frac{1}{2^{k}}=1-\frac{1}{2^{x}}$, and thus
" $x+1$ is better than x " $\Leftrightarrow 1-\frac{1}{2^{x}}<\frac{90}{100} \Leftrightarrow 2^{x}<10 \Leftrightarrow x \leq 3$.
From this we get that $f(1)<f(2)<f(3)<f(4)>f(5)>f(6)>\cdots$
so it follow that $x=4$ is the best choice among all $x \geq 1$.
The formulas above give that $f(4)=r(4)-c(4)=187.5-90=97.5$, which is better than $f(0)=0$.

Thus, $x=4$ is the best choice among all $x \geq 0$.
5.(b) Now, the revenue is 100ξ if $\xi \leq x$ and 0 if $\xi>x$.

Therefore, the expected revenue becomes $r(x)=100 \sum_{k=1}^{x} k P(\xi=k)$.
Then $r(x+1)=100 \sum_{k=1}^{x+1} k P(\xi=k)$, from which it follows that
$\Delta r(x)=r(x+1)-r(x)=100(x+1) P(\xi=x+1)=\frac{100(x+1)}{2^{x+1}}$.
Since $\Delta c(x)=c(x+1)-c(x)=10$ (when $x \geq 1$), we get that
$\Delta f(x)=f(x+1)-f(x)=\Delta r(x)-\Delta c(x)=\frac{100(x+1)}{2^{x+1}}-10$.
This gives us the following equivalences:
" $x+1$ is better than $x " \Leftrightarrow \Delta f(x)>0 \Leftrightarrow \frac{x+1}{2^{x+1}}>\frac{1}{10}$.
For $x=1,2, \ldots$, the left hand side in the last inequality becomes:
$\frac{2}{4}, \frac{3}{8}, \frac{4}{16}, \frac{5}{32}, \frac{6}{64}, \frac{7}{128}, \ldots$,
from which it follows that $\Delta f(x)>0$ for $x=1,2,3,4$, while $\Delta f(x)<0$ for $x \geq 5$.
This implies that $f(1)<f(2)<f(3)<f(4)<f(5)>f(6)>f(7)>\cdots$
so it follow that $x=5$ is the best choice among all $x \geq 1$.
The formulas above give that $f(5)=r(5)-c(5)=178.125-100=78.125$, which is better than $f(0)=0$.
Thus, $x=5$ is the best choice among all $x \geq 0$.

