Solutions to the exam in SF2862, June 2009

Exercise 1.

This is a deterministic periodic-review inventory model. Let $n=$ the number of considered weeks, i.e. $n=4$ in this exercise, and $r_{i}=$ the demand at week i, i.e. $r_{1}=r_{2}=r_{3}=r_{4}=100$ in this exercise.
The total cost consists of three parts: The ordering costs for orders, the holding costs, and the metal cost. But the latter is $1000 \times\left(r_{1}+r_{2}+r_{3}+r_{4}\right)$ for all feasible order plans, so this unavoidable metal cost may simply be ignored when searching for an optimal order plan.
Let $C_{i}^{(j)}=$ the minimal remaining (ordering+holding) costs from week i, given that the inventory is empty at the end of week $i-1$ and then filled in such a way that the next time it will be empty is by the end of week j. Then $C_{i}^{(j)}=K+h \cdot\left(r_{i+1}+2 r_{i+2}+\cdots+(j-i) r_{j}\right)+C_{j+1}$. Further, let $C_{i}=$ the minimal remaining (ordering+holding) costs from week i, given that the inventory is empty at the end of week $i-1$. Then $C_{i}=\min \left\{C_{i}^{(i)}, C_{i}^{(i+1)}, \ldots, C_{i}^{(n)}\right\}$.
(a). Here, $K=700$ and $h=2$. We then get that
$C_{4}=C_{4}^{(4)}=700$.
$C_{3}^{(4)}=700+200=900$.
$C_{3}^{(3)}=700+C_{4}=1400$.
$C_{3}=\min \left\{C_{3}^{(3)}, C_{3}^{(4)}\right\}=900$.
$C_{2}^{(4)}=700+200+400=1300$.
$C_{2}^{(3)}=700+200+C_{4}=1600$.
$C_{2}^{(2)}=700+C_{3}=1600$.
$C_{2}=\min \left\{C_{2}^{(2)}, C_{2}^{(3)}, C_{2}^{(4)}\right\}=1300 . C_{1}^{(4)}=700+200+400+600=1900$.
$C_{1}^{(3)}=700+200+400+C_{4}=2000$.
$C_{1}^{(2)}=700+200+C_{3}=1800$.
$C_{1}^{(1)}=700+C_{2}=2000$.
$C_{1}=\min \left\{C_{1}^{(1)}, C_{1}^{(2)}, C_{1}^{(3)}, C_{1}^{(4)}\right\}=1800$.
The optimal plan is to order 200 kg before the first week and 200 kg before the third week.
(b). Here, $K=700+c>700$ and $h=2$. We then get that
$C_{4}=C_{4}^{(4)}=700+c$.
$C_{3}^{(4)}=700+c+200=900+c$.
$C_{3}^{(3)}=700+c+C_{4}=1400+2 c$.
$C_{3}=\min \left\{C_{3}^{(3)}, C_{3}^{(4)}\right\}=900+c$.
$C_{2}^{(4)}=700+c+200+400=1300+c$.
$C_{2}^{(3)}=700+c+200+C_{4}=1600+2 c$.
$C_{2}^{(2)}=700+c+C_{3}=1600+2 c$.
$C_{2}=\min \left\{C_{2}^{(2)}, C_{2}^{(3)}, C_{2}^{(4)}\right\}=1300+c$.
$C_{1}^{(4)}=700+c+200+400+600=1900+c$.
$C_{1}^{(3)}=700+c+200+400+C_{4}=2000+2 c$.
$C_{1}^{(2)}=700+c+200+C_{3}=1800+2 c$.
$C_{1}^{(1)}=700+c+C_{2}=2000+2 c$.
$C_{1}=\min \left\{C_{1}^{(1)}, C_{1}^{(2)}, C_{1}^{(3)}, C_{1}^{(4)}\right\}$.
If $0<c<100$ then $C_{1}=C_{1}^{(2)}=1800+2 c$, and then the optimal plan is to order 200 kg before the first week and 200 kg before the third week.
If $c>100$ then $C_{1}=C_{1}^{(4)}=1900+c$, and then the optimal plan is to order 400 kg before the first week.

Exercise 3.

The solution of this exercise is best illustrated by drawing a decision tree, but since we are reluctant to do this in latex, we present the solution in a much more boring way.
Let H1 be the decision of making a hard first serve.
Let L1 be the decision of making a lob first serve.
Let H2 be the decision of making a hard second serve.
Let $\mathbf{L} 2$ be the decision of making a lob second serve.
Let IN be the event that the serve is in bounds.
Let OUT be the event that the serve is not in bounds.
H1
A hard first serve is in bounds with prob p, and out of bounds with prob $1-p$.

H1 - IN

Here, MM wins the point with prob $3 / 4$ and loses the point with prob $1 / 4$.
The expected cost at this node is thus $(3 / 4) \cdot(-1)+(1 / 4) \cdot(+1)=-1 / 2$.

H1 - OUT

There are two alternatives for the second serve: hard or lob.

H1 - OUT - H2

A hard second serve is in bounds with prob p, and out of bounds with prob $1-p$.

H1 - OUT - H2 - IN

Here, MM wins the point with prob $3 / 4$ and loses the point with prob $1 / 4$.
The expected cost at this node is thus $(3 / 4) \cdot(-1)+(1 / 4) \cdot(+1)=-1 / 2$.

H1 - OUT - H2 - OUT

Here, MM loses the point. The expected cost at this node is thus +1 .

H1 - OUT - H2

The expected cost at this node is thus $p \cdot(-1 / 2)+(1-p) \cdot(+1)=1-3 p / 2$.

H1 - OUT - L2

A lob second serve is in bounds with prob q, and out of bounds with prob $1-q$.

H1 - OUT - L2 - IN

Here, MM wins the point with prob $1 / 2$ and loses the point with prob $1 / 2$.
The expected cost at this node is thus $(1 / 2) \cdot(-1)+(1 / 2) \cdot(+1)=0$.

H1 - OUT - L2 - OUT

Here, MM loses the point. The expected cost at this node is thus +1 .

H1 - OUT - L2

The expected cost at this node is thus $q \cdot 0+(1-q) \cdot(+1)=1-q$.

H1 - OUT

The minimal expected cost at this node is thus $\min \{1-3 p / 2,1-q\}$.
H1
The minimal expected cost at this node is thus $p \cdot(-1 / 2)+(1-p) \cdot \min \{1-3 p / 2,1-q\}$.

L1

A lob first serve is in bounds with prob q, and out of bounds with prob $1-q$.

L1 - IN

Here, MM wins the point with prob $1 / 2$ and loses the point with prob $1 / 2$. The expected cost at this node is thus $(1 / 2) \cdot(-1)+(1 / 2) \cdot(+1)=0$.

L1 - OUT

There are two alternatives for the second serve: hard or lob.

L1 - OUT - H2

A hard second serve is in bounds with prob p, and out of bounds with prob $1-p$.

L1 - OUT - H2 - IN

Here, MM wins the point with prob $3 / 4$ and loses the point with prob $1 / 4$.
The expected cost at this node is thus $(3 / 4) \cdot(-1)+(1 / 4) \cdot(+1)=-1 / 2$.

L1 - OUT - H2 - OUT

Here, MM loses the point. The expected cost at this node is thus +1 .

L1 - OUT - H2

The expected cost at this node is thus $p \cdot(-1 / 2)+(1-p) \cdot(+1)=1-3 p / 2$.

L1 - OUT - L2

A lob second serve is in bounds with prob q, and out of bounds with prob $1-q$.

L1 - OUT - L2 - IN

Here, MM wins the point with prob $1 / 2$ and loses the point with prob $1 / 2$.
The expected cost at this node is thus $(1 / 2) \cdot(-1)+(1 / 2) \cdot(+1)=0$.

L1 - OUT - L2 - OUT

Here, MM loses the point. The expected cost at this node is thus +1 .

L1 - OUT - L2

The expected cost at this node is thus $q \cdot 0+(1-q) \cdot(+1)=1-q$.

L1 - OUT

The minimal expected cost at this node is thus $\min \{1-3 p / 2,1-q\}$.

L1

The minimal expected cost at this node is thus $q \cdot 0+(1-q) \cdot \min \{1-3 p / 2,1-q\}$.

From these calculations, we get that the minimal expected cost before making the first serve is given by
$\min \{-p / 2+(1-p) \cdot \min \{1-3 p / 2,1-q\},(1-q) \cdot \min \{1-3 p / 2,1-q\}\}$.
Alternatively, this minimal expected cost can be written
$\min \left\{\mathrm{F}_{\mathrm{HH}}(p, q), \mathrm{F}_{\mathrm{HL}}(p, q), \mathrm{F}_{\mathrm{LH}}(p, q), \mathrm{F}_{\mathrm{LL}}(p, q)\right\}$, where
$\mathrm{F}_{\mathrm{HH}}(p, q)=-p / 2+(1-p)(1-3 p / 2)$,
$\mathrm{F}_{\mathrm{HL}}(p, q)=-p / 2+(1-p)(1-q)$,
$\mathrm{F}_{\mathrm{LH}}(p, q)=(1-q)(1-3 p / 2)$,
$\mathrm{F}_{\mathrm{LL}}(p, q)=(1-q)^{2}$.
(a). If $p=1 / 2$ and $q=7 / 8$ then
$\mathrm{F}_{\mathrm{HH}}(p, q)=-1 / 8$,
$\mathrm{F}_{\mathrm{HL}}(p, q)=-3 / 16$,
$\mathrm{F}_{\mathrm{LH}}(p, q)=1 / 32$,
$\mathrm{F}_{\mathrm{LL}}(p, q)=1 / 64$,
which shows that the optimal strategy is a hard first serve and a lob second serve.
(b). We have that
$\mathrm{F}_{\mathrm{LH}}(p, q)-\mathrm{F}_{\mathrm{HL}}(p, q)=(1-q)(1-3 p / 2)+p / 2-(1-p)(1-q)=p q / 2>0$,
which shows that the strategy "L1-H2" is always inferior to the strategy "H1-L2".

Exercise 4.

The arrival rates to the two facilities are obtained from the system
$\lambda_{1}=9 p+0.2 \lambda_{2}$ and $\lambda_{2}=9(1-p)+0.5 \lambda_{1}$,
which gives that $\lambda_{1}=2+8 p$ and $\lambda_{2}=10-5 p$.
We know that both F_{1} and F_{2} are $M / M / 1$ with $\mu_{1}=\mu_{2}=10$, so that $\rho_{1}=\lambda_{1} / \mu_{1}=0.2+0.8 p$ and $\rho_{2}=\lambda_{2} / \mu_{2}=1-0.5 p$.
(a) The system can be in steady state if and only if both $\rho_{1}<1$ and $\rho_{2}<1$ (with strict inequalities), which is equivalent to that $0<p<1$ (with strict inequalities).
In particular, the system can not be in steady state if $p=0$ or $p=1$.
(b) Assume that $0<p<1$. Then
$L_{1}=\frac{\lambda_{1}}{\mu_{1}-\lambda_{1}}=\frac{2+8 p}{8-8 p}=-1+\frac{10}{8-8 p}$ and $L_{2}=\frac{\lambda_{2}}{\mu_{2}-\lambda_{2}}=\frac{10-5 p}{5 p}=-1+\frac{10}{5 p}$,
so that the average number of customers in the system is
$L_{1}+L_{2}=-2+\frac{10}{8-8 p}+\frac{10}{5 p}=-2+\frac{1.25}{1-p}+\frac{2}{p}$.
This number should be minimized with respect to $p \in(0,1)$.
Let $f(p)=-2+\frac{1.25}{1-p}+\frac{2}{p}$. Then $f^{\prime}(p)=\frac{1.25}{(1-p)^{2}}-\frac{2}{p^{2}}$ and $f^{\prime \prime}(p)=\frac{2.5}{(1-p)^{3}}+\frac{4}{p^{3}}$.
Since $f^{\prime \prime}(p)>0$ for all $p \in(0,1), f$ is strictly convex on this interval, so we search for a solution to $f^{\prime}(p)=0$, which after some simple calculations gives that the unique optimal p is $p=\frac{\sqrt{2}}{\sqrt{2}+\sqrt{1.25}}=\frac{2}{2+\sqrt{2.5}} \approx \frac{2}{2+1.6}=\frac{5}{9}$.
(c) Assume again that $0<p<1$. Then the steady state probability that facilty F_{1} is empty is $1-\rho_{1}=0.8(1-p)$ and the corresponding probability for F_{2} is $1-\rho_{2}=0.5 p$. The steady state probability that the whole system is empty is then given by $\left(1-\rho_{1}\right)\left(1-\rho_{2}\right)=0.4 p(1-p)$, which should be maximized. Simple calculations shows that the unique optimal p is $p=0.5$, in which case the steady state probability for an empty system is 0.1 .
(d) Let V_{j} be the expected time for a customer who arrives to facility F_{j} to go through that facility once. Then $V_{j}=\frac{1}{\mu_{j}-\lambda_{j}}$, so that $V_{1}=\frac{1}{8-8 p}$ and $V_{2}=\frac{1}{5 p}$.
Let W_{j} be the expected remaining time in the system for a customer who arrives to facility F_{j}. Then $W_{1}=V_{1}+0.5 W_{2}$ and $W_{2}=V_{2}+0.2 W_{1}$, which gives that $W_{1}=\frac{10 / 9}{8-8 p}+\frac{5 / 9}{5 p}$ and $W_{2}=\frac{2 / 9}{8-8 p}+\frac{10 / 9}{5 p}$.
A randomly chosen new customer will with probablity p first go to F_{1}, and with probablity $1-p$ first go to F_{2}. Therefore, the expected total time in the system for a new customer is $p W_{1}+(1-p) W_{2}=\frac{1}{9}\left(\frac{2+8 p}{8-8 p}+\frac{10-5 p}{5 p}\right)=\frac{L_{1}+L_{2}}{9}$.
The optimal p is thus the same as in (b) above.

Exercise 5.

Assume that the false coin is known to be among n specific coins.
If Hook puts k coins in each bowl, where $k \geq 1$ and $2 k \leq n$, then one of the
following two things will happen.
The two bowls contain equal weights, in which case the false coin is among the left out $n-2 k$ coins. After this, the minimal numbers of additional trials (in worst case) is $V(n-2 k)$.

The bowls contain different weights, in which case the false coin is among the k coins in the lightest bowl. After this, the minimal numbers of additional trials (in worst case) is $V(k)$.

So after the trial with k coins in each bowl, the minimal numbers of additional trials will (in worst case) be the largest of the two numbers $V(n-2 k)$ and $V(k)$, i.e. $\max \{V(n-2 k), V(k)\}$.

Note that if n is even and $k=n / 2$, then the bowls cannot contain equal weights, so then $\max \{V(n-2 k), V(k)\}$ ought to be replaced simply by $V(k)$. But this replacement is not needed if we define $V(0)=0$.

The above discussion leads to the recursive equation:
$V(n)=1+\min _{k}\{\max \{V(n-2 k), V(k)\}\}$,
where k must satisfy $1 \leq k \leq \frac{n}{2}$, and where $V(0)=V(1)=0$.
$V(2)=1+\min _{k}\{\max \{V(2-2 k), V(k)\}\}=1+\{\max \{V(0), V(1)\}\}=1 . \quad$ Optimal $k=1$.
$V(3)=1+\min _{k}\{\max \{V(3-2 k), V(k)\}\}=1+\{\max \{V(1), V(1)\}\}=1 . \quad$ Optimal $k=1$.
$V(4)=1+\min _{k}\{\max \{V(4-2 k), V(k)\}\}=1+\min \{\max \{V(2), V(1)\}, \max \{V(0), V(2)\}\}=$ $=1+\min \{\max \{1,0\}, \max \{0,1\}\}=1+1=2$. Optimal $k=1$ or 2 .
$V(5)=1+\min _{k}\{\max \{V(5-2 k), V(k)\}\}=1+\min \{\max \{V(3), V(1)\}, \max \{V(1), V(2)\}\}=$
$=1+\min \{\max \{1,0\}, \max \{0,1\}\}=1+1=2$. Optimal $k=1$ or 2 .
$V(6)=1+\min _{k}\{\max \{V(6-2 k), V(k)\}\}=$
$1+\min \{\max \{V(4), V(1)\}, \max \{V(2), V(2)\}, \max \{V(0), V(3)\}\}=$
$1+\min \{\max \{2,0\}, \max \{1,1\}, \max \{0,1\}\}=1+1=2$. Optimal $k=2$ or 3 .
$V(7)=1+\min _{k}\{\max \{V(7-2 k), V(k)\}\}=$
$1+\min \{\max \{V(5), V(1)\}, \max \{V(3), V(2)\}, \max \{V(1), V(3)\}\}=$
$1+\min \{\max \{2,0\}, \max \{1,1\}, \max \{0,1\}\}=1+1=2$. Optimal $k=2$ or 3 .
$V(8)=1+\min _{k}\{\max \{V(8-2 k), V(k)\}\}=$
$1+\min \{\max \{V(6), V(1)\}, \max \{V(4), V(2)\}, \max \{V(2), V(3)\} \max \{V(0), V(4)\}\}=$
$1+\min \{\max \{2,0\}, \max \{2,1\}, \max \{1,1\}, \max \{0,2\}\}=1+1=2$. Optimal $k=3$.
$V(9)=1+\min _{k}\{\max \{V(9-2 k), V(k)\}\}=$
$1+\min \{\max \{V(7), V(1)\}, \max \{V(5), V(2)\}, \max \{V(3), V(3)\} \max \{V(1), V(4)\}\}=$
$1+\min \{\max \{2,0\}, \max \{2,1\}, \max \{1,1\}, \max \{0,2\}\}=1+1=2$. Optimal $k=3$.
So the optimal strategy for Captain Hook is to first put 3 coins in each bowl and let 3 coins be left out. After the first balancing, there will be just 3 coins to choose between. Then one more balancing is needed, with one coin in each bowl and one left out.

