
Solutions to the exam in SF2862, March 2009

Exercise 1.

Let S be the number of overbookings made by Happy.
If ξ > S then there are ξ − S empty seats.
If ξ < S then there are S − ξ bumped passengers.
Thus, the expected cost is C(S) = pE(ξ−S)+ + hE(S−ξ)+,
where p = 300 and h = 600.

Let ∆C(S) = C(S + 1)− C(S) = p (Fξ(S)−1) + hFξ(S) = 900Fξ(S)− 300.

Then ∆C(S) is nondecreasing in S and C(S) = C(0) + ∆C(0) + · · ·+ ∆C(S−1).

Therefore, S? minimizes C(S) if and only if ∆C(0) ≤ · · · ≤ ∆C(S?−1) ≤ 0,
while 0 ≤ ∆C(S?) ≤ ∆C(S? + 1) ≤ · · · · · · , which is equivalent to that

Fξ(S?−1) ≤ 300
900
≤ Fξ(S?).

For the given discrete random variable ξ, it holds that
Fξ(0) = 0,
Fξ(1) = 1/25,
Fξ(2) = (1 + 2)/25 = 3/25,
Fξ(3) = (1 + 2 + 3)/25 = 6/25 < 300/900,
Fξ(4) = (1 + 2 + 3 + 4)/25 = 10/25 > 300/900.

Thus, S? = 4.

If ξ is assumed to be a continuous random variable then
C ′(S) = p (Fξ(S)−1) + hFξ(S) = 900Fξ(S)− 300,
while C ′′(S) = 900fξ(S) ≥ 0 for all S, so that C(S) is a convex function.

Therefore, S? minimizes C(S) if and only if Fξ(S?) =
300
900

.
For the given continuous random variable ξ, it holds that

Fξ(S) =
S2

50
for S ∈ [0, 5], while Fξ(S) = 1− (10− S)2

50
for S ∈ [5, 10].

Thus, S? =
√

50/3 ≈
√

16.7, which rounded to nearest integer again gives that
the number of overbookings should be 4.
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Exercise 2.

The arrival rates to the three facilities are obtained from the system

λ1 = 20,
λ2 = 0.4 · λ1 + (2/3) · λ3,
λ3 = 0.3 · λ1 + (3/4) · λ2,

which gives that λ1 = 20, λ2 = 24, λ3 = 24.

We know that F1 is M/M/2 with µ1 = 20, so that ρ1 = λ1/(2µ1) = 0.5,
while F2 and F3 both are M/M/1 with µ2 = µ3 = 30, so that ρ2 = ρ3 = 0.8.
Therefore,

L1 =
2ρ1

1− ρ2
1

=
1

1− 0.52
=

4
3

, L2 =
ρ2

1− ρ2
= 4 and L3 =

ρ3

1− ρ3
= 4.

So the average number of customers in the system is L1 + L2 + L3 = 91
3 .

Let Nj be the number of customers at facility j (at a randomly chosen point in time).

Then
P (N1 =0) =

1− ρ1

1 + ρ1
=

1
3

, P (N1 =1) = 2ρ1
1− ρ1

1 + ρ1
=

1
3

,

P (N2 =0) = 1− ρ2 = 0.2, P (N2 =1) = ρ2(1− ρ2) = 0.16,

P (N3 =0) = 1− ρ3 = 0.2, P (N3 =1) = ρ3(1− ρ3) = 0.16,

The probablity that there is exactly one customer in the system is then given by

P (N1 =1)P (N2 =0)P (N3 =0) + P (N1 =0)P (N2 =1)P (N3 =0)+

+P (N1 =0)P (N2 =0)P (N3 =1) =
0.104

3
.

Let Vj be the expected time for a customer who arrives to facility Fj to go
through that facility once. Then Vj = Lj/λj , so that

V1 = (4/3)/20 = 1/15, V2 = 4/24 = 1/6, V3 = 4/24 = 1/6.

Let Wj be the expected remaining time in the system for a customer who arrives
to facility Fj. Then

W1 = V1 + 0.4 ·W2 + 0.3 ·W3,
W2 = V2 + (3/4) ·W3,
W3 = V3 + (2/3) ·W2,

which gives that

W1 = 7/15 hours = 28 minutes,
W2 = 7/12 hours = 35 minutes,
W3 = 5/9 hours = 33 minutes and 20 seconds.

So the answer on (c) is W2 = 35 minutes.
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Exercise 3.

Let A be the event that the error is of type A,
let B be the event that the error is of type B,
let “A” be the event that the test says that the error is of type A,
let “B” be the event that the test says that the error is of type B.

Then the follwing probabilities are known:

P (A) = 0.6, P (B) = 0.4,
P (“A”|A) = 2/3, P (“B”|A) = 1/3,
P (“A”|B) = 1/4, P (“B”|B) = 3/4.

But we will also need the probablities:

P (“A”), P (“B”), P (A |“A”), P (B |“A”), P (A |“B”), P (B |“B”).

These are obtained as follows:

P (“A”) = P (“A” ∩A) + P (“A” ∩B) = P (A)P (“A”|A) + P (B)P (“A”|B) = 0.5.
P (“B”) = 1− P (“A”) = 0.5.

P (A |“A”) =
P (A ∩“A”)
P (“A”)

=
P (A)P (“A”|A)

P (“A”)
= 0.8, P (B |“A”) = 1− P (A |“A”) = 0.2,

P (B |“B”) =
P (B ∩“B”)
P (“B”)

=
P (B)P (“B”|B)

P (“B”)
= 0.6, P (A |“B”) = 1− P (B |“B”) = 0.4.

Now we are ready to analyze and compare the different decisions.

This is best illustrated by drawing a decision tree, but since we are reluctant to do this
in latex, we present the solution in a slightly more boring way.

First, there is two alternatives, to test or not to test.

NOTEST
Assume that we skip the test. Then there are two alternatives,
to start with RA or to start with RB.

NOTEST - RA
Skip the test, do RA first and then, if needed, do RB.
Then the expected time to cure the engine is P (A) · 40 + P (B) · 70 = 52 hours.

NOTEST - RB
Skip the test, do RB first and then, if needed, do RA.
Then the expected time to cure the engine is P (B) · 30 + P (A) · 70 = 54 hours.

Thus, the minmal expected total time for the case NOTEST is 52 hours.

The solution continues on next page.
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TEST
Assume that we start by doing the test. Then two things may happen, “A” or “B”.

TEST - ”A”
Assume that the test says that the error is of type A.
The probability for this is P (“A”) = 0.5.
Then there are two possible ways to continue, to do RA (and if needed RB),
or to do RB (and if needed RA).

TEST - ”A” - RA
Assume that the test says that the error is of type A, and that we continue with RA.
Then the expected time to cure the engine is
P (A |“A”) · (40 + T ) + P (B |“A”) · (70 + T ) = 46 + T hours.

TEST - ”A” - RB
Assume that the test says that the error is of type A, and that we continue with RB.
Then the expected time to cure the engine is
P (B |“A”) · (30 + T ) + P (A |“A”) · (70 + T ) = 62 + T hours.

Thus, the minmal expected total time for the case TEST - ”A” is 46 + T hours.

TEST - ”B”
Assume that the test says that the error is of type B.
The probability for this is P (“B”) = 0.5.
Then there are two possible ways to continue, to do RB (and if needed RA),
or to do RA (and if needed RB).

TEST - ”B” - RB
Assume that the test says that the error is of type B, and that we continue with RB.
Then the expected time to cure the engine is
P (B |“B”) · (30 + T ) + P (A |“B”) · (70 + T ) = 46 + T hours.

TEST - ”B” - RA
Assume that the test says that the error is of type B, and that we continue with RA.
Then the expected time to cure the engine is
P (A |“B”) · (40 + T ) + P (B |“B”) · (70 + T ) = 58 + T hours.

Thus, the minmal expected total time for the case TEST - ”B” is 46 + T hours.

The minmal expected total time for the case TEST is then given by
P (“A”) · (46 + T ) + P (“B”) · (46 + T ) = 46 + T hours.

Finally, we see that the case TEST is better than the case NOTEST if T < 6,
which means that we should do the test if it requires less than 6 hours to complete.
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Exercise 4.
We have the following transistion probabilities:

pSS(A) = 3/4, pST (A) = 1/4,
pTS(A) = 1/4, pTT (A) = 3/4,

pSS(B) = 1/2, pST (B) = 1/2,
pTS(B) = 1/2, pTT (B) = 1/2.

The expected immediate cost for different actions in different states are then given by

CSA = pSS(A)C(S−A−S) + pST (A)C(S−A−T ) = (3/4) · 24 + (1/4) · 28 = 25.
CSB = pSS(B)C(S−B−S) + pST (B)C(S−B−T ) = (1/2) · 24 + (1/2) · 40 = 32.
CTA = pTS(A)C(T−A−S) + pTT (A)C(T−A−T ) = (1/4) · 14 + (3/4) · 6 = 8.
CTB = pTS(B)C(T−B−S) + pTT (B)C(T−B−T ) = (1/2) · 2 + (1/2) · 0 = 1.

(4.a):
First, the three numbers g, vS and vT , corresponding to the suggested policy
dS = B and dT = A, are calculated from the system

vT = 0,
g + vS = CSB + pSS(B) vS + pST (B) vT ,
g + vT = CTA + pTS(A) vS + pTT (A) vT ,

which becomes

vT = 0,
g + vS = 32 + 0.5 vS + 0.5 vT ,
g + vT = 8 + 0.25 vS + 0.75 vT ,

with the unique solution g = 16, vS = 32, vT = 0.

To check optimality of the current policy, we first check if

g + vS = min{ CSA + pSS(A) vS + pST (A) vT , CSB + pSS(B) vS + pST (B) vT }.

The left hand side is 16 + 32 = 48, while the right hand side is
min{ 25 + 0.75 · 32 + 0.25 · 0 , 32 + 0.5 · 32 + 0.5 · 0 } = min{ 49, 48 } = 48, OK!

Next, we check if

g + vT = min{ CTA + pTS(A) vS + pTT (A) vT , CTB + pTS(B) vS + pTT (B) vT }.

The left hand side is 16 + 0 = 16, while the right hand side is
min{ 8 + 0.25 · 32 + 0.75 · 0 , 1 + 0.5 · 32 + 0.5 · 0 } = min{ 16, 17 } = 16, OK!

Thus, the suggested policy dS = B and dT = A is optimal.

5



4.(b):
The LP problem without discounting is

minimize 25YSA + 32YSB + 8YTA + YTB

subject to YSA + YSB + YTA + YTB = 1,

YSA + YSB − pSS(A)YSA − pSS(B)YSB − pTS(A)YTA − pTS(B)YTB = 0,

YTA + YTB − pST (A)YSA − pST (B)YSB − pTT (A)YTA − pTT (B)YTB = 0,

YSA, YSB, YTA, YTB ≥ 0.

which becomes

minimize 25YSA + 32YSB + 8YTA + YTB

subject to YSA + YSB + YTA + YTB = 1,

0.25YSA + 0.5YSB − 0.25YTA − 0.5YTB = 0,

(−0.25YSA − 0.5YSB + 0.25YTA + 0.5YTB = 0, )

YSA, YSB, YTA, YTB ≥ 0.

The last two equations are the same so one may be removed, as indicated by the parenthesis.
The results from (a) imply that the only non-zero variables in the optimal solution of this
LP problem are YSB and YTA.
The first two equations then give that YSB + YTA = 1 and 0.5YSB − 0.25YTA = 0, so that
YSB = 1/3 and YTA = 2/3, while YSA = YTB = 0.
The optimal value of the LP problem is 32 · (1/3) + 8 · (2/3) = 16.

(4.c):
First, the two numbers VS and VT , corresponding to the suggested policy
dS = B and dT = A, are calculated from the system
VS = CSB + 0.8 · (pSS(B)VS + pST (B)VT ),
VT = CTA + 0.8 · (pTS(A)VS + pTT (A)VT ),
which becomes
VS = 32 + 0.4VS + 0.4VT ,
VT = 8 + 0.2VS + 0.6VT ,
with the unique solution VS = 100, VT = 70.

To check optimality of the current policy, we first check if
VS = min{ CSA + 0.8 · (pSS(A)VS + pST (A)VT ), CSB + 0.8 · (pSS(B)VS + pST (B)VT ) }.
The left hand side is 100, while the right hand side is
min{ 25 + 0.6 · 100 + 0.2 · 70 , 32 + 0.4 · 100 + 0.4 · 70 } = min{ 99, 100 } = 99,
so the suggested policy is not optimal!

We could stop here, but just for fun we could also check if
VT = min{ CTA + 0.8 · (pTS(A)VS + pTT (A)VT ), CTB + 0.8 · (pTS(B)VS + pTT (B)VT ) }.
The left hand side is 70, while the right hand side is
min{ 8 + 0.2 · 100 + 0.6 · 70 , 1 + 0.4 · 100 + 0.4 · 70 } = min{ 70, 69 } = 69,
which once more shows that the suggested policy dS = B and dT = A is not optimal.
A strictly better policy is, according to the above calculations, dS = A and dT = B.
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Exercise 5.

Assume that the false coin is known to be among n specific coins.
If Hook puts k coins in each bowl, where k ≥ 1 and 2k ≤ n, then one of the
following two things will happen.
1. The two bowls contain equal weights, which happens with probability (n−2k)/n,
in which case the false coin is among the left out n−2k coins.
2. The two bowls contain different weights, which happens with probability 2k/n,
in which case the false coin is among the k coins in the lightest bowl.

This leads to the recursive equation:

V (n) = 1 + min
k
{ n−2k

n
· V (n−2k) +

2k
n
· V (k) }, where k must satisfy 1 ≤ k ≤ n

2
.

Obvious boundary condition is V (1) = 0.
Further, we may define V (0) arbitrary, e.g. V (0) = 0,
since V (0) is always multiplied by the probabililty 0.

This gives:

V (2) = 1 + 0 · V (0) + 1 · V (1) = 1. Optimal k = 1.

V (3) = 1 + 1
3 · V (1) + 2

3 · V (1) = 1. Optimal k = 1.

V (4) = 1 + min { 2
4 · V (2) + 2

4 · V (1), 0
4 · V (0) + 4

4 · V (2) } = 1 + min { 1
2 , 1 } =

3
2

Optimal k = 1.

V (5) = 1 + min { 3
5 · V (3) + 2

5 · V (1), 1
5 · V (1) + 4

5 · V (2) } = 1 + min { 3
5 ,

4
5 } =

8
5

Optimal k = 1.

V (6) = 1 + min { 4
6 · V (4) + 2

6 · V (1), 2
6 · V (2) + 4

6 · V (2), 0
6 · V (0) + 6

6 · V (3) } = 2
Optimal k = 1, 2 or 3.

V (7) = 1 + min { 5
7 · V (5) + 2

7 · V (1), 3
7 · V (3) + 4

7 · V (2), 1
7 · V (1) + 6

7 · V (3) } =
13
7

Optimal k = 3.

So the optimal strategy for Captain Hook is to first put 3 coins in each bowl. If the weights
are equal, the left out coin is the false one. Otherwise, there are 3 coins to choose between,
in which case one more balancing is needed, with one coin in each bowl and one left out.

By the way, note that V (7) < V (6) !
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