Formula-sheet at the exam in SF2866,SF2868, 2015

If events occur according to a Poisson process with rate λ, where τ denotes the time between two consecutive events, and $X(T)$ denotes the number of events on the time interval $[0, T]$, then

$$
P(\tau \leq t)=1-e^{-\lambda t}, \quad P(X(T)=\ell)=\frac{(\lambda T)^{\ell}}{\ell!} e^{-\lambda T}, \quad \mathrm{E}[\tau]=1 / \lambda, \quad \mathrm{E}[X(T)]=\lambda T
$$

Markov chain in discrete time.
$\mathbf{P}=$ the matrix with elements $p_{i j}=P\left(X_{n+1}=j \mid X_{n}=i\right)$.
$\mathbf{p}^{(n)}=$ the row vector with components $p_{j}^{(n)}=P\left(X_{n}=j\right)$. Then $\mathbf{p}^{(n+1)}=\mathbf{p}^{(n)} \mathbf{P}$.
The row vector π defines a stationary distribution if $\pi=\pi \mathbf{P}, \sum_{j} \pi_{j}=1$ and $\pi_{j} \geq 0$.
Markov chain in continuous time (also called Markov process with discrete state space).
$\mathbf{P}(h)$ the matrix with elements $p_{i j}(h)=P(X(t+h)=j \mid X(t)=i)$.
$\mathbf{p}(t)=$ the row vector with components $p_{j}(t)=P(X(t)=j)$. Then $\mathbf{p}(t+h)=\mathbf{p}(t) \mathbf{P}(h)$.
Assumption: $p_{i j}(h)=q_{i j} h+o(h)$ if $j \neq i$, while
$p_{i i}(h)=1+q_{i i} h+o(h)=1-q_{i} h+o(h)$, where $q_{i}=-q_{i i}=\sum_{j \neq i} q_{i j}$.
Thus, $\mathbf{P}(h) \approx \mathbf{I}+h \mathbf{Q}$ and $(\mathbf{p}(t+h)-\mathbf{p}(t)) / h \approx \mathbf{p}(t) \mathbf{Q}$ for small $h>0$.
The row vector π defines a stationary distribution if $\pi \mathbf{Q}=\mathbf{0}, \sum_{j} \pi_{j}=1$ and $\pi_{j} \geq 0$.
The system $\pi \mathbf{Q}=\mathbf{0}$ can be written $\sum_{i \neq j} \pi_{i} q_{i j}+\pi_{j} q_{j j}=0$, for all j, or $\pi_{j} \sum_{k \neq j} q_{j k}=\sum_{i \neq j} \pi_{i} q_{i j}$ ("jumps out from state $j=$ jumps into state j ").
Some quantities and relations in queueing theory (where P_{n} corresponds to π_{n} above):

$$
\begin{array}{ll}
L=\sum_{n=0}^{\infty} n P_{n}, \quad L_{q}=\sum_{n=s}^{\infty}(n-s) P_{n}, \quad \bar{\lambda}=\sum_{n=0}^{\infty} \lambda_{n} P_{n}, \quad L=\bar{\lambda} W, \quad L_{q}=\bar{\lambda} W_{q} \\
M / M / 1: & \rho=\lambda / \mu<1, \quad P_{0}=1-\rho, \quad P_{n}=\rho^{n} P_{0}, \quad L=\frac{\rho}{1-\rho} . \\
M / M / 2: & \lambda_{n}=\lambda \text { for } n \geq 0, \quad \mu_{1}=\mu, \quad \mu_{n}=2 \mu \text { for } n \geq 2, \quad \rho=\lambda /(2 \mu)<1, \\
& P_{0}=\frac{1-\rho}{1+\rho}, \quad P_{n}=2 \rho^{n} P_{0} \text { for } n \geq 1, \quad L=\frac{2 \rho}{1-\rho^{2}} .
\end{array}
$$

Jackson queueing networks.
Calculate $\lambda_{1}, \ldots, \lambda_{m}$ from $\lambda_{j}=a_{j}+\sum_{i} \lambda_{i} p_{i j}$. Check $\lambda_{j}<s_{j} \mu_{j}$.
Analyze each service facility to obtain $P\left(N_{j}=n_{j}\right)$.
Then $P\left(N_{1}=n_{1}, \ldots, N_{m}=n_{m}\right)=\prod_{j} P\left(N_{j}=n_{j}\right)$.
W_{1}, \ldots, W_{m} can be obtained from $W_{i}=V_{i}+\sum_{j} p_{i j} W_{j}$, where $V_{i}=L_{i} / \lambda_{i}$.
Some deterministic inventory models.
EOQ with shortage not permitted: Minimize $\frac{K d}{Q}+c d+\frac{h Q}{2}$.
$C_{i}=\min _{j}\left\{C_{i}^{(j)} \mid i \leq j \leq n\right\}$, where $C_{i}^{(j)}=C_{j+1}+K+h\left(r_{i+1}+2 r_{i+2}+\cdots+(j-i) r_{j}\right)$.
Some stochastic inventory models.
$\overline{C(S)}=c S+p \mathrm{E}\left[(\xi-S)^{+}\right]+h \mathrm{E}\left[(S-\xi)^{+}\right]$.
If ξ is a continuous non-negative random variable then
$\mathrm{E}\left[(\xi-S)^{+}\right]=\int_{S}^{\infty}(t-S) f_{\xi}(t) d t, \quad \mathrm{E}\left[(S-\xi)^{+}\right]=\int_{0}^{S}(S-t) f_{\xi}(t) d t$, and $C^{\prime}(S)=c+p\left(F_{\xi}(S)-1\right)+h F_{\xi}(S)$.
If ξ is a non-negative integer-valued random variable then S is integer and
$\mathrm{E}\left[(\xi-S)^{+}\right]=\sum_{j=S}^{\infty}(j-S) p_{\xi}(j), \quad \mathrm{E}\left[(S-\xi)^{+}\right]=\sum_{j=0}^{S}(S-j) p_{\xi}(j)$,
and $C(S+1)-C(S)=c+p\left(F_{\xi}(S)-1\right)+h F_{\xi}(S)$.

Marginal allocation for generating efficient solutions to the pair (f, g), where f and g are integer-convex separable functions, f decreasing and g increasing in the non-negative integer variables x_{1}, \ldots, x_{n}.
Generate a table in which the j :th column contains the quotients
$-\Delta f_{j}(0) / \Delta g_{j}(0),-\Delta f_{j}(1) / \Delta g_{j}(1),-\Delta f_{j}(2) / \Delta g_{j}(2), \ldots$
Let all the quotients in the table be uncanceled.
Initiate the variables to their smallest feasible values and repeat the following:
Let ℓ be the number of the column with the largest uncanceled quotient.
Cancel this quotient, and increase the ℓ :th variable x_{ℓ} by one.
Finite horizon MDP recursion (discounting if $0<\alpha<1$, no discounting if $\alpha=1$):

$$
V_{i}^{(n)}=\min _{k}\left\{C_{i k}+\alpha \sum_{j} p_{i j}(k) V_{j}^{(n-1)}\right\} \quad \text { (backward time). }
$$

Policy improvement algorithm for MDP without discounting:

1. For a given policy, calculate v_{0}, \ldots, v_{M} and g from
$v_{M}=0$ and $g+v_{i}=C_{i, d_{i}}+\sum_{j} p_{i j}\left(d_{i}\right) v_{j}$.
2. The current policy is optimal if $g+v_{i}=\min _{k}\left\{C_{i k}+\sum_{j} p_{i j}(k) v_{j}\right\}$. Otherwise, define a new policy by letting $d_{i}=$ a minimizing k above.
Then go to 1 .
Policy improvement algorithm for MDP with discounting:
3. For a given policy, calculate V_{0}, \ldots, V_{M} from $V_{i}=C_{i, d_{i}}+\alpha \sum_{j} p_{i j}\left(d_{i}\right) V_{j}$.
4. The current policy is optimal if $V_{i}=\min _{k}\left\{C_{i k}+\alpha \sum_{j} p_{i j}(k) V_{j}\right\}$.

Otherwise, define a new policy by letting $d_{i}=$ a minimizing k above.
Then go to 1 .

Note: No calculator at the exam!

