
Formula-sheet at the exam in SF2866,SF2868, 2015

If events occur according to a Poisson process with rate λ, where τ denotes the time between
two consecutive events, and X(T ) denotes the number of events on the time interval [0, T ],
then

P (τ ≤ t) = 1− e−λt, P (X(T ) = `) =
(λT )`

` !
e−λT , E[τ ] = 1/λ, E[X(T )] = λT.

Markov chain in discrete time.
P = the matrix with elements pij = P (Xn+1 = j | Xn = i).

p(n) = the row vector with components p
(n)
j = P (Xn = j). Then p(n+1) = p(n)P.

The row vector π defines a stationary distribution if π = πP,
∑

j πj = 1 and πj ≥ 0.

Markov chain in continuous time (also called Markov process with discrete state space).
P(h) the matrix with elements pij(h) = P (X(t+ h) = j | X(t) = i).
p(t) = the row vector with components pj(t) = P (X(t) = j). Then p(t+h) = p(t)P(h).
Assumption: pij(h) = qijh+ o(h) if j 6= i, while
pii(h) = 1 + qiih+ o(h) = 1− qih+ o(h), where qi = −qii =

∑
j 6=i qij .

Thus, P(h) ≈ I + hQ and (p(t+h)− p(t))/h ≈ p(t)Q for small h > 0.
The row vector π defines a stationary distribution if πQ = 0,

∑
j πj = 1 and πj ≥ 0.

The system πQ = 0 can be written
∑

i 6=j πiqij + πjqjj = 0, for all j, or
πj

∑
k 6=j qjk =

∑
i 6=j πiqij (“jumps out from state j = jumps into state j”).

Some quantities and relations in queueing theory (where Pn corresponds to πn above):

L =

∞∑
n=0

nPn, Lq =

∞∑
n=s

(n−s)Pn, λ̄ =

∞∑
n=0

λnPn, L = λ̄W, Lq = λ̄Wq

M/M/1: ρ = λ/µ < 1, P0 = 1−ρ , Pn = ρnP0 , L =
ρ

1−ρ
.

M/M/2: λn = λ for n ≥ 0, µ1 = µ, µn = 2µ for n ≥ 2, ρ = λ/(2µ) < 1,

P0 =
1−ρ
1+ρ

, Pn = 2ρnP0 for n ≥ 1, L =
2ρ

1−ρ2
.

Jackson queueing networks.
Calculate λ1, . . . , λm from λj = aj +

∑
i λipij . Check λj < sjµj .

Analyze each service facility to obtain P (Nj =nj).
Then P (N1=n1, . . . , Nm=nm) =

∏
j P (Nj =nj).

W1, . . . ,Wm can be obtained from Wi = Vi +
∑

j pijWj , where Vi = Li/λi.

Some deterministic inventory models.

EOQ with shortage not permitted: Minimize
Kd

Q
+ c d+

hQ

2
.

Ci = min
j
{C(j)

i | i ≤ j ≤ n}, where C
(j)
i = Cj+1 +K + h(ri+1 + 2ri+2 + · · ·+ (j−i)rj).

Some stochastic inventory models.
C(S) = c S + pE[(ξ−S)+] + hE[(S−ξ)+].
If ξ is a continuous non-negative random variable then
E[(ξ−S)+] =

∫∞
S (t−S)fξ(t)dt , E[(S−ξ)+] =

∫ S
0 (S−t)fξ(t)dt,

and C ′(S) = c+ p (Fξ(S)−1) + hFξ(S).
If ξ is a non-negative integer-valued random variable then S is integer and
E[(ξ−S)+] =

∑∞
j=S(j−S)pξ(j) , E[(S−ξ)+] =

∑S
j=0(S−j)pξ(j),

and C(S + 1)− C(S) = c+ p (Fξ(S)−1) + hFξ(S).



Marginal allocation for generating efficient solutions to the pair (f, g),
where f and g are integer-convex separable functions, f decreasing and
g increasing in the non-negative integer variables x1, . . . , xn.
Generate a table in which the j:th column contains the quotients
−∆fj(0)/∆gj(0), −∆fj(1)/∆gj(1), −∆fj(2)/∆gj(2), . . .
Let all the quotients in the table be uncanceled.
Initiate the variables to their smallest feasible values and repeat the following:

Let ` be the number of the column with the largest uncanceled quotient.
Cancel this quotient, and increase the `:th variable x` by one.

Finite horizon MDP recursion (discounting if 0 < α < 1, no discounting if α = 1):

V
(n)
i = min

k
{ Cik + α

∑
j pij(k)V

(n−1)
j } (backward time).

Policy improvement algorithm for MDP without discounting:

1. For a given policy, calculate v0, . . . , vM and g from
vM = 0 and g + vi = Ci,di +

∑
j pij(di)vj .

2. The current policy is optimal if g + vi = mink{ Cik +
∑

j pij(k)vj }.
Otherwise, define a new policy by letting di = a minimizing k above.
Then go to 1.

Policy improvement algorithm for MDP with discounting:

1. For a given policy, calculate V0, . . . , VM from Vi = Ci,di + α
∑

j pij(di)Vj .

2. The current policy is optimal if Vi = mink{ Cik + α
∑

j pij(k)Vj}.
Otherwise, define a new policy by letting di = a minimizing k above.
Then go to 1.

Note: No calculator at the exam!


