Formula-sheet at the exam in SF2866,SF2868, 2015

If events occur according to a Poisson process with rate A\, where 7 denotes the time between
two consecutive events, and X (7") denotes the number of events on the time interval [0, 7],

hen
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Markov chain in discrete time.

P = the matrix with elements p;; = P(Xp11 =7 | Xp = 1).

p(™ = the row vector with components p§-n) = P(X,, =j). Then p(*th) = p(Pp,
The row vector 7 defines a stationary distribution if = = 7P, ;™ =1and m; > 0.

Markov chain in continuous time (also called Markov process with discrete state space).
P(h) the matrix with elements p;;(h) = P(X(t+h) =j | X(t) =1).

p(t) = the row vector with components p;(t) = P(X(t) = j). Then p(t+h) = p(t)P(h).
Assumption: p;;(h) = gi;h + o(h) if j # i, while

pii(h) =1+ gish + o(h) =1 —g;h + o(h), where q; = —qii = >, 4; Gij-

Thus, P(h) ~ I+ hQ and (p(t+h) —p(t))/h =~ p(t)Q for small h > 0.

The row vector 7 defines a stationary distribution if 7Q =0, > ;mi=1 and 7; > 0.
The system 7Q = 0 can be written Zi# miqi; + m;qj; = 0, for all j, or

j Zk# qjk = Z#j migij (“jumps out from state j = jumps into state ;7).

Some quantities and relations in queueing theory (where P, corresponds to 7, above):

o0
L= ann, L, = Z(n—s)Pn, A=) APu, L=AW, Ly=2iW,
n=s n=0
M/M/1: p—)\/u <1, Pp=1-p, Py=p"Py, L= IL.
—p
M/M/2: Ay=Xforn>0, pp =p, po,=2p forn>2, p=x/(2u) <1,
—p
Ph=—-, P,=2p"F f{ >1, L= .
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Jackson queueing networks.
Calculate A, ..., Ay from A\j =aj + >, A\ipsj . Check A\j < s;p;.
Analyze each service facility to obtain P(N;=n;).
Then P(Ni=n1,..., Np=nn) = []; P(N;=n;).
Wi, ..., Wy, can be obtained from W V + E] pi;W;, where V; = L;/\;.

Some deterministic inventory models.

Kd h
EOQ with shortage not permitted: Minimize 0 +cd+ TQ

C; = min{CiJ) | i <j <n}, where CZ-(j) =Cj1+ K+ h(rign +2ripo+ -+ (J—19)r).
J

Some stochastic inventory models.
C(S) = cS+pE[(§-9) "]+ hE[(S-£)T].
Ifé¢isa continuous non-negative random variable then
i(fS fst5f5() i(Sf foStf£)
and C”(S) =c+p(Fe(S)— )+hF§(S).
If £ is a non-negative integer-valued random variable then S is integer and
E[(€=8)] = X2s(i—S)pe(i),  El(S—&)'] =35 o(S—pe(i),
and C(S+1)—C(S) =c+p(Fe(S)—1) + hF:(S).




Marginal allocation for generating efficient solutions to the pair (f, g),

where f and g are integer-convex separable functions, f decreasing and

g increasing in the non-negative integer variables z1,..., xy,.

Generate a table in which the j:th column contains the quotients

—Af;(0)/Ag;(0), —Af;(1)/Ag;(1), —=Af;(2)/Ag;(2), ...

Let all the quotients in the table be uncanceled.

Initiate the variables to their smallest feasible values and repeat the following;:
Let ¢ be the number of the column with the largest uncanceled quotient.
Cancel this quotient, and increase the ¢:th variable x; by one.

Finite horizon MDP recursion (discounting if 0 < o < 1, no discounting if v = 1):

7

AR mkin{ Cik +ad_; pij(k‘)Vj(nfl) } (backward time).

Policy improvement algorithm for MDP without discounting:

1. For a given policy, calculate v, ...,vys and g from

oy =0 and g+v; = Cig, + 3, pij(di)v;.

2. The current policy is optimal if g+ v; = ming{ Ci + >_; pij(k)v; }-
Otherwise, define a new policy by letting d; = a minimizing k above.
Then go to 1.

Policy improvement algorithm for MDP with discounting:

1. For a given policy, calculate Vp,..., Vs from V; = C; 4, + o Zj pij(di) V.

2. The current policy is optimal if V; = ming{ Ciy + -, pi;(k)V;}.
Otherwise, define a new policy by letting d; = a minimizing k above.
Then go to 1.

Note: No calculator at the exam!



