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This manuscript deals with some mathematical optimization models for multi-level inventories
of expensive repairable items. Early models in this area were developed by Sherbrooke, and
applied for the U.S. Air Force Logistics. Later, these early models have been extended in
several directions, and used in a variety of civil application, see e.g. http://www.systecon.se/.

In the book “Optimal inventory modeling of systems: multi-echelon techniques”, the author
Craig Sheerbrooke, who has developed several important models in this area, describes a
part of the model considered in this manuscript as follows (in “aircraft language”): “When a
malfunction is diagnosed on an aircraft, the malfunctioning item is removed from the aircraft
and brought into base supply. If a spare is available, it is issued and installed on the aircraft;
otherwise a backorder is established . . . which implies that there is a “hole” in an aircraft
that causes it to be grounded . . .”.

Further quotations from his description will follow later.

We make frequent reference to the companion manuscript On marginal allocation, abbreviated
MALLOC, which we assume that the reader has access to.
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1 Model 1 (one base, one LRU)

We begin by considering the simplest model, which is characterized as follows:

1. There is only one base, with its own inventory of spare items and its own workshop.

2. There is only one organizational level. (The case with a central depot is considered
later.)

3. Only one type of items is considered, to make it less abstract it is here referred to as
aircraft engine. The considered item “aircraft engine” is an example of a so called “line
replaceable unit”, abbreviated LRU.

We assume that the LRU:s can be in two states, either functioning or defect, and that when
a LRU is defect it has to be repaired in the workshop to become functioning again.

The rate at which aircrafts with a defect engine arrive at the base is modelled by a Poisson
process with intensity λ engines per time unit.

When a defect engine has arrived, it is immediately removed from the aircraft and brought
into the workshop. If the inventory of functioning engines is non-empty, such an engine is
immediately installed into the aircraft which is then operable again. But if the inventory of
functioning engines is empty, a backorder is established and the aircraft is grounded and out
of order for the time being.

When a defect engine has been repaired in the workshop, it is immediately put in the inventory
of spare engines. The repair times for defect engines are assumed to be independent and
equally distributed random variables with expected value T time units. (This implicitly
assumes that the workshop has the capacity to repair any number of engines in parallell at
constant service rate) According to a theorem by Palm (see Appendix), this implies that
the number of engines in the workshop, at a randomly chosen time, is a Poisson distributed
random variable with expected value λT .

An important decision variable in the model is the following:

s = the number of spare engines which has been purchased for the base, i.e., the number of
engines in the inventory when there is no engine in the workshop.

The integer s is referred to as the “stock level”.

If the system is considered at a given (randomly chosen) time, one has the following natural
random variables:
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X = the number of engines currently in the workshop.
OH = the number of engines currently available in the inventory (on hand).
BO = the number of currently grounded aircrafts waiting for an engine (backorders).

Between these random variables, which can only take on non-negative integer values, the
following relation holds:

BO −OH = X − s . (1.1)

Moreover, at each time at least one of BO and OH is zero.
Therefore, BO and OH can be expressed as the following functions of X and s:

BO = (X− s)+ = max{ 0 , X− s} and OH = (s−X)+ = max{ 0 , s−X}. (1.2)

1.1 Expected number of backorders in Model 1

As mentioned above, X is a Poisson distributed random variable with expected value λT ,
i.e., the probability mass function is

p(k) := P (X = k) =
(λT )k

k!
e−λT for k = 0, 1, 2, · · · . (1.3)

A key quantity is the expected value of the number of back orders, i.e., the average number
of aircrafts that are grounded while waiting for a working engine. This quantity can be
expressed as E[BO] = E[(X−s)+], which will from now on be denoted EBO(s). Thus,

EBO(s) = E[BO] = E[(X− s)+]. (1.4)

Since the probability distribution of X is given by (1.3), the computation of EBO(s) can be
done recursively as follows.

First, p(k) can be computed recursively, since p(0) = e−λT and

p(k + 1) =
λT

k + 1
p(k), for k = 0, 1, 2, . . . (1.5)

Next, let R(s) = the probability for shortage, i.e.

R(s) = P (X > s) =
∞∑

k=s+1

p(k) for s = 0, 1, 2, . . . (1.6)

R(s) can also be computed recursively, since R(0) = 1− p(0) and

R(s+ 1) = R(s)− p(s+ 1), for s = 0, 1, 2, . . . (1.7)
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Further,

EBO(0) = E[(X−0)+] = E[X] = λT , (1.8)

while

EBO(s) = E[(X−s)+] =
∞∑

k=s+1

(k − s)p(k) , (1.9)

and

EBO(s+ 1) =
∞∑

k=s+2

(k − s− 1)p(k) =
∞∑

k=s+1

(k − s− 1)p(k) . (1.10)

From (1.6), (1.9) and (1.10) the following simple recursion formula is obtained,

EBO(s+ 1) = EBO(s)−R(s), för s = 0, 1, 2, . . . (1.11)

Assume that EBO(s) should be computed for s = 0, 1, . . . , smax. This can easily be done
using the following Matlab statements. (As the indexing of vectors in Matlab starts with 1,
p(0) above will be called p(1) in Matlab, etc.)

lamT = lambda*T;

p(1) = exp(-lamT);

R(1) = 1 - p(1);

EBO(1) = lamT;

for k=1:smax

k1=k+1;

p(k1) = lamT*p(k)/k;

R(k1) = R(k) - p(k1);

EBO(k1) = EBO(k) - R(k);

end

Note that since p(s) > 0 for all s ≥ 0, it follows that R(s+ 1) < R(s). Moreover,

∆EBO(s) := EBO(s+ 1)− EBO(s) = −R(s) < 0 , and (1.12)

∆2EBO(s) := ∆EBO(s+ 1)−∆EBO(s) = p(s+ 1) > 0 , (1.13)

which means that EBO(s) is decreasing and integer-convex, see MALLOC.

If necessary, one can also compute the variance of the number of back orders, i.e.,

VBO(s) := Var[(X−s)+] = E[((X−s)+)2]− (E[(X−s)+])2, (1.14)
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as follows. First let

EBO2(s) = E[((X−s)+)2] =
∞∑

k=s+1

(k − s)2p(k). (1.15)

Then

EBO2(s+ 1) =
∞∑

k=s+2

(k − s− 1)2p(k) =
∞∑

k=s+1

(k − s− 1)2p(k), (1.16)

from which it is obtained, after some manipulations, that

EBO2(s)− EBO2(s+ 1) = EBO(s) + EBO(s+ 1). (1.17)

It follows, after some additional manipulations, that

VBO(s+ 1) = VBO(s)− (EBO(s) + EBO(s+ 1))(1−R(s)), (1.18)

with the initial value
VBO(0) = Var[X] = λT. (1.19)

Hence, only two additional statements in Matlab are needed:

VBO(1) = lamT;

VBO(k1) = VBO(k) - (EBO(k) + EBO(k1))(1 - R(k));

Exercise: Verify (1.17) and (1.18).

1.2 An optimization problem under Model 1

We now consider the following possible optimization problem under Model 1:

minimize f(s) = qEBO(s) + cs , subject to s ∈ {0, 1, 2, 3, . . .} . (1.20)

where the constant c > 0 can be interpreted as cost per spare engine, while the constant
q > 0 can be interpreted as the cost per grounded (out of order) aircraft.

Let ∆f(s) = f(s+ 1)− f(s). Then

∆f(s) = q∆EBO(s) + c = −qR(s) + c . (1.21)

Since q > 0 and EBO(s) is integer-convex, it follows that f(s) is integer-convex, and then
the following proposition follows from Prop 1.1 in MALLOC.
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Proposition 1.1: Let f(s) = qEBO(s) + cs , for s ∈ {0, 1, 2, 3, . . .} . Then

ŝ = 0 minimizes f(s) if and only if R(0) ≤ c

q
, (1.22)

ŝ > 0 minimizes f(s) if and only if R(ŝ) ≤ c

q
≤ R(ŝ− 1) . (1.23)

A simple algorithm for solving problem (1.20) is then to calculate R(s) for s = 0, 1, 2, · · ·
until an ŝ is found such that (for the first time) R(ŝ) ≤ c/q. Then ŝ is an optimal solution.
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2 Model 2 (one base, several LRU)

In this model, we extend Model 1 to the case that there are several different line replaceable
units (LRU) in each aircraft. More precisely, we assume that there are n > 1 different LRU,
here referred to as LRU1, . . . ,LRUn. In the aircraft example considered before, we can in
addition of engines also consider transducers, actuators and electronic modules. As soon as
any of these is defect, it must be replaced by a functioning one before the aircraft can be
used again. The assumptions and notations from Model 1 (which corresponds to n = 1) are
then generalized as follows.

Aircrafts with defect LRUj arrive to the base according to a Poisson process with intensity
λj . It is assumed that the LRU:s of different type malfunction independently of each others.
The repair times for LRUj are assumed to be independent and equally distributed stochastic
variables with expected value Tj .

The important decision variables are now s1, · · · , sn, where

sj = the number of spare units of LRUj which have been purchased for the base, i.e.,
the number of LRUj in the inventory when there is no LRUj in the workshop.

The integer sj denote the stock level of LRUj , and introduce the vector s of stock levels
s := (s1, . . . , sn)T.

Let cj be the cost per spare unit of LRUj , and introduce the vector c = (c1, . . . , cn)T.

Then C(s) := cTs = the total cost of spare items at the base.

Consider the system at a given (randomly chosen) time, and let

Xj = the number of LRUj in the workshop.

According to Palm’s theorem, Xj is Poisson distributed with expected value λjTj , i.e.,

pj(k) = P (Xj = k) =
(λjTj)

k

k!
e−λjTj . (2.1)

Let EBO(s) be the average number of aircrafts grounded due to shortage of some item. Then
(since the defects occur independently)

EBO(s) =
n∑
j=1

EBOj(sj) =
n∑
j=1

E[(Xj − sj)+], (2.2)

where EBOj(sj) is the average number of aircrafts grounded due to shortage of LRUj .

As in Model 1, it holds that

EBOj(sj + 1) = EBOj(sj)−Rj(sj) , (2.3)
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where

Rj(sj) = P (Xj > sj) =
∞∑

k=sj+1

pj(k) . (2.4)

Consequently, we obtain recursive equations of the same type as in Model 1.

Now let S = {s = (s1, . . . , sn)T | sj ∈ {0, 1, 2, . . .} for all j}.

S is an infinite set. In practice, the set S can be made finite by only considering the points
in S that satisfy C(s) ≤ Cmax, where Cmax is a upper limit for how much the spare-parts
can possibly be allowed to cost. However, the number of elements in S is typically extremely
large, for realistic values of n and Cmax.

2.1 Efficient solutions of Model 2

Each s ∈ S induces a spare parts cost C(s) and an average number of back orders EBO(s).
The vector ŝ ∈ S is an efficient solution and (C (̂s),EBO(̂s)) is an efficient point if there is a
constant q > 0 such that ŝ is an optimal solution to the following optimization problem in s:

min C(s) + qEBO(s), subject to s ∈ S. (2.5)

The following geometrical interpretation of the efficients points was provided in MALLOC:
Let M = {(C(s),EBO(s)) | s ∈ S} and assume that all the points in M are plotted in a
coordinate system where the horizontal axis shows C(s) and the vertical axis shows EBO(s).

The convex hull of M is defined as the smallest convex set that contains the whole set M .
The efficient curve corresponding to the set M is defined as the piecewise linear curve that
constitutes the “southwestern boundary” of the convex hull of M .
The points (C(s),EBO(s)) ∈ M which lie on this curve are called efficient points, and the
corresponding vectors s are called efficient solutions.

Typically, we are interested in determining the efficient curve for a given situation, with given
values on the above parameters. It turns out that even if the numbers of elements in S and
M are extremely large, it is surprisingly easy to determine the efficient curve! We describe
below how this is done.

Proposition 2.1: ŝ ∈ S minimizes C(s) + qEBO(s) on S if and only if the following
conditions are satisfied for each j = 1, . . . , n:

Rj(0)

cj
≤ 1

q
if ŝj = 0 , (2.6)

Rj(ŝj)

cj
≤ 1

q
≤ Rj(ŝj − 1)

cj
if ŝj > 0 . (2.7)
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Proposition 2.2: ŝ ∈ S is an efficient solution and (C (̂s),EBO(̂s)) ∈M is an efficient point
if and only if there is a q > 0 such that the conditions (2.6)–(2.7) are
satisfied for each j = 1, . . . , n.

Proposition 2.3: Assume that ŝ ∈ S is an efficient solution and let Ĉ = C (̂s) and ÊBO =
EBO(̂s).
Then ŝ is an optimal solution to both the following optimization problems:

minC(s), subject to EBO(s) ≤ ÊBO, s ∈ S (2.8)

min EBO(s), subject to C(s) ≤ Ĉ, s ∈ S (2.9)

2.2 Marginal Allocation Algorithm for Model 2

We now describe a surprisingly simple algorithm for determining the efficient curve. The
algorithm generates efficient solutions s(1), s(2), s(3), . . . “ from left to right”, i.e., each new
generated point has a higher value on C(s) but a lower value on EBO(s) than the previously
generated point. Throughout the algorithm s(i) denotes the i:th generated efficient solution,
C(i) denotes the corresponding spare-part cost C(s(i)), and EBO(i) denotes the corresponding
expected number of backorders EBO(s(i)). The algorithm terminates when there is no longer
any efficient solution with C(s) ≤ Cmax.

Step 0:
Generate a table with n columns as follows. For j = 1, . . . , n, fill the j:th column from the
top and down with the quotients Rj(0)/cj , Rj(1)/cj , Rj(2)/cj , etc.. (A moderately large
number of quotients will suffice, since additional quotients can be calculated later if it should
be proven necessary.) Note that the quotients are positive and strictly decreasing in each
column.
Set i = 0, s1 = . . . = sn = 0, s(0) = (0, . . . , 0)T, C(0) = 0 and EBO(0) =

∑n
j=1 λjTj .

Let all the quotients in the table be uncanceled.

Step 1:
Select the largest uncanceled quotient in the table (if there are several equally large, choose
one of these arbitrarily). Cancel this quotient and let k be the number of the column from
which the quotient was canceled.

Step 2:

Let i := i+ 1. Then let s
(i)
k := s

(i−1)
k + 1 and s

(i)
j := s

(i−1)
j for all j 6= k.

Set C(i) = C(i−1) + ck , EBO(i) = EBO(i−1) −Rk(sk(i− 1)),
If C(i) ≥ Cmax, terminate the algorithm. Otherwise, go back to Step 1.
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2.3 Some properties of the algorithm

Note that each generated solution s(i) differs from the previously generated solution s(i−1) in
just one component. The name of the algorithm stems from the fact that

Rj(sj)

cj
= −∆EBOj(sj)

cj
=

decrease in EBO(s)

increase in C(s)
if sj is increased by 1.

Hence, in each step of the algorithm, one increases the sj which gives marginally the largest
reduction of EBO(s) per invested crown/euro/dollar.

The following two propositions are immediate consequences of Prop 3.1 and 3.2 in MALLOC:

Proposition 2.3: Each generated solution s(i) is an efficient solution.

Proposition 2.4: If all quotients Rj(sj)/cj in the original table are different, then the
algorithm generates all efficient solutions that satisfy C(s) ≤ Cmax.

These conditions determine ŝ uniquely. However, this solution will actually be generated
by the algorithm in the stage where the latest canceled quotient is > 1/q, while the largest
quotient that has not yet been canceled is < 1/q.

Proposition 2.5: Assume that ŝ ∈ S is an efficient solution and let Ĉ = C (̂s) and ÊBO =
EBO(̂s). Then ŝ is an optimal solution to both the following optimization problems:

minimize C(s) subject to EBO(s) ≤ ÊBO , s ∈ S . (2.10)

minimize EBO(s) subject to C(s) ≤ Ĉ , s ∈ S . (2.11)

We say that s ∈ S is “strictly better” than ŝ ∈ S if C(s) < C (̂s) and EBO(s) ≤ EBO(̂s),
or if EBO(s) < EBO(̂s) and C(s) ≤ C (̂s). After adopting this notation, the last proposition
above states that if ŝ ∈ S is an efficient solution, then no other s ∈ S is strictly better than ŝ.
(The reverse, however, is not true. There may exist s̄ ∈ S which are not efficient solutions,
but nevertheless satisfy that no s ∈ S is strictly better than s̄.)
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3 Model 3 (a central depot and several bases, one LRU)

In this METRIC model (Multi-Echelon Technique for Recoverable Item Control) there are
two organizational levels, but (to begin with) only one type of LRU, which is again referred to
as aircraft engine. On the lowest organizational level there are n “ bases”, each one equipped
with a local inventory of spare engines, but no workshop. On the highest level there is a
central depot with a central workshop and a central inventory of spare engines.

Decision variables in the model are:
sj = the number of spare engines at base j, for j = 1, . . . , n, and
s0 = the number of spare engines at the depot.

At base j errors, i.e., aircrafts with defect engines, arrive according to a Poisson process
with intensity λj . When a defect engine arrives at the base it is immediately replaced by a
functioning engine from the local inventory, unless the local inventory is empty.

If there is no engine in the local inventory that can replace the defect engine a back order is
established at the base, and the corresponding aircraft is grounded.

The defect engine is sent directly to the central workshop. At the same time, a functioning
engine is sent from the central inventory to the local inventory at the base. If the central
inventory is empty, so no functioning engine can be sent to the base, a depot backorder is
established. This does not necessarily imply that an aircraft is grounded, but the risk of back
orders at the bases increases.

The time it takes to transport a defect engine from a base to the depot, Tbd, is assumed to
be deterministic and known, and the same is assumed for the time it takes to transport a
functioning engine from the depot to a base, Tdb. For simplicity, we assume that there is no
difference between the bases in this respect.

The repair time for a defect engine at the central workshop is assumed to be a random
variable with expected value Trep. An important assumption (approximation) in the model
is that these repair times are independent and equally distributed.

The question now is how large the inventories of spare engines should be, both locally at
the bases and centrally at the depot. In particular, we are interested in determining the
efficient curve which relates the cost of spare engines (horizontal axis) to the average number
of grounded aircrafts (vertical axis) when the purchased spare engines are allocated in an
optimal way.

3.1 Analysis of the situation at the depot

Let X0 = the number of defect engines that are in, or on their way to the workshop.
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From the given conditions, it follows that defect engines arrive to the workshop according to
a Poisson process with intensity λ0 = λ1 + . . .+ λJ . As the repair times have been assumed
independent, it follows from Palm’s theorem that X0 is a Poisson distributed random variable
with

E[X0] = λ0T0, where T0 = Tbd + Trep. (3.1)

This implies that it is possible to compute EBO0(s0) = E[(X0 − s0)
+], i.e., the average

number of back orders at the depot, with the same type of recursive equations that was used
in Model 1. If needed, one can also compute VBO0(s0) = Var[(X0 − s0)+].

3.2 Analysis of the situation at a base

Let Xj = the number of engines in the pipeline at base j, i.e., the number of defect engines
that have been sent from base j to the central workshop, but for which replacement engines
have still not been delivered to the local supply at base j.

It holds that Xj = Yj + Zj , where

Yj = the number of defect engines that have been received at base j in the last Tdb time
units,

Zj = the number of defect engines that were received at base j more than Tdb time units ago,
which where depot backorders Tdb time units ago.

Since Yj is the number of Poisson arrivals in a given time interval, Yj is a Poisson distributed
random variable with E[Yj ] = λjTdb. For a Poisson distributed random variable the variance
is equal to the expected value. Thus, Var[Yj ] = λjTdb.

Let Z0 = Z1 + . . . + Zn = the total number of back orders at the depot Tdb time units ago.
Note that Z0 has the same distribution as (X0 − s0)+.

Since Zj is the part of Z0 that corresponds to base j, and since, on average, λj/λ0 of all the
defect engines at the central workshop originate from base j, we obtain

E[Zj ] =
λj
λ0

E[Z0] =
λj
λ0

EBO0(s0). (3.2)

A formal derivation of this expression is described now. For a given Z0 = z0, Zj is binomial

distributed, Bin(n, pj), with parameters n = z0 and pj =
λj
λ0

. This gives us the following

conditional expected values and variances:

E[Zj |Z0] = pjZ0 och Var[Zj |Z0] = pj(1− pj)Z0 . (3.3)
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Using well-known computational rules for conditional expected values and conditional vari-
ances (see e.g. BETA) we get

E[Zj ] = E[E[Zj |Z0]] och Var[Zj ] = E[Var[Zj |Z0]] + Var[E[Zj |Z0]], (3.4)

which leads to the following expressions:

E[Zj ] = pjE[Z0] = pjE[(X0 − s0)+] =
λj
λ0

EBO0(s0), (3.5)

Var[Zj ] = pj(1− pj)EBO0(s0) + p2jVBO0(s0), (3.6)

where VBO0(s0) = Var[(X0−s0)+] = the variance of the number of back orders at the depot.
A reformulation gives

Var[Zj ] = E[Zj ] +
λ2j
λ20

(VBO0(s0)− EBO0(s0)). (3.7)

As Yj and Zj are independent (the arrival of defect units after a given time instant is indepen-
dent of the arrivals occurring before that time instant) we finally get the following expressions
for the expected value and variance of the number of engines in the pipeline:

E[Xj ] = E[Yj + Zj ] = λj(Tdb +
EBO0(s0)

λ0
), (3.8)

Var[Xj ] = E[Xj ] +
λ2j
λ20

(VBO0(s0)− EBO0(s0)). (3.9)

In the METRIC model one makes the assumption that the pipeline times of the engines at
a base are independent and equally distributed random variables. Here the pipeline time for
an engine is defined as the time from which the defect engine arrives at a base and is sent to
the workshop until the local inventory at the base has received a corresponding functioning
engine in exchange.

From Palm’s theorem it then follows that Xj is a Poisson distributed random variable with
expected value given by (3.8) above, i.e.,

pj(k) = P (Xj = k) =
(λjTj)

k

k!
e−λjTj , where Tj = Tdb +

EBO0(s0)

λ0
. (3.10)

This means that it is possible to compute EBOj(sj) = E[(Xj−sj)+], i.e., the average number
of back orders at the base j, with the same type of recursive equations that was used in Model
1. However, note that EBOj(sj) also depends on s0, since E[Xj ] depends on s0. We will
therefore use the notation EBOj(s0, sj).
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If the assumption in METRIC was correct, the variance and the expected value of Xj would
be the same. However, this is not the case when s0 > 0, since

VBO0(s0) > EBO0(s0), for s0 > 0, (3.11)

and as a consequence, according to (3.9),

Var[Xj ] > E[Xj ], for s0 > 0. (3.12)

Yet, according to the above, if s0 = 0 it holds that

Var[Xj ] = E[Xj ] = λj(Tdb + Trep + Tbd), for s0 = 0. (3.13)

In the VARI-METRIC model one instead assumes that if s0 > 0, then Xj is a translated neg-
ative binomial distributed random variable with expected value given by (3.8) and variance
given by (3.9) above. More precisely, it is assumed that for s0 > 0

P (Xj = 0) =

(
1

Vj

) µj
Vj−1

, and (3.14)

P (Xj = k + 1) =
µj + (Vj − 1)k

Vj(k + 1)
· P (Xj = k), k = 0, 1, 2, . . . (3.15)

where µj = E[Xj ] and Vj =
Var[Xj ]

E[Xj ]
.

For s0 = 0 it is still assumed that Xj is a Poisson distributed random variable with expected
value and variance given by (3.13) above.

It is now possible to compute EBOj(s0, sj) = E[(Xj − sj)
+], i.e., the average number of

back orders at base j, with almost the same type of recursive equations as in the METRIC
model. The only difference is that now (3.14) and (3.15) are used in the computation of the
probabilities for the number of units in the pipeline (if s0 > 0).

It can easily be verified that if Vj −→ 1 then (3.14) and (3.15) become

P (Xj = 0) = e−µj , and (3.16)

P (Xj = k + 1) =
µj

(k + 1)
· P (Xj = k), k = 0, 1, 2, . . . (3.17)

as for the Poisson distribution.
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3.3 Efficient curve for Model 3

Let s = (s1, . . . , sn)T, and let

EBO(s0, s) =

n∑
j=1

EBOj(s0, sj) , (3.18)

i.e., EBO(s0, s) = the average number of aircrafts that are grounded at a base.

Let c0 = the cost per spare engine, and let C(s0, s) = the total cost of the spare engines, i.e.,

C(s0, s) = c0s0 +

n∑
j=1

c0sj . (3.19)

It will now be described how to determine the efficient curve in a coordinate system where the
horizontal axis shows C(s0, s) and the vertical axis shows EBO(s0, s). Only efficient solutions
with C(s0, s) ≤ Cmax will be considered, where Cmax is a upper bound on the possible cost
for spare engines. Equivalently, this can be expressed as a bound on the number of spare
engines as s0 +

∑n
j=1 sj ≤ smax, where smax is the largest integer such that csmax ≤ Cmax.

3.4 Algorithm for a fixed s0

In this section it is assumed that s0 is held fixed (to a non-negative integer).

Then it is possible, by using the marginal allocation algorithm of Model 2, to determine the
efficient solutions for allocation of spare engines to the bases. More precisely, first EBO0(s0)
is calculated and then the algorithm in Section 2.2 is applied with the following modifications:
- the index j now corresponds to base number j (and not LRUj),
- the cost coefficients cj are now all equal to c (the cost for a spare engine)
- the time constants Tj are now all equal to Tdb + EBO0(s0)/λ0 (the expected pipeline times)

The results from the algorithm will be a set of efficient points s(k), the corresponding expected
number of grounded airscrafts,

EBO(s0, s
(k)) =

n∑
j=1

EBOj(s0, s
(k)
j ), (3.20)

and the corresponding total cost of spare engines,

C(s0, s
(k)) = cs0 +

n∑
j=1

cs
(k)
j = c(s0 + k), (3.21)
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where the last equality follows from the fact that in each iteration of the marginal allocation
algorithm exactly one more spare engine is allocated, and s(0) = (0, · · · , 0)T . This means
that it is sufficient to calculate s(k) for k = 0, 1, · · · , smax − s0.

The generated efficient solutions are saved, and also the following EBO-values:

F (s0, k) = EBO(s0, s
(k)), for k = 0, 1, · · · , smax − s0. (3.22)

3.5 The complete algorithm for Model 3

Start with s0 = 0, and apply the algorithm described above (for fixed s0).
This gives a set of efficient solutions for the case s0 = 0, and corresponding EBO-values:

F (0, 0), F (0, 1), · · · , F (0, smax). (3.23)

The restricted efficient curve for the case s0 = 0 is then the piecewise linear curve between
the smax + 1 points

(0, F (0, 0)) , (c, F (0, 1)) , · · · , (smaxc, F (0, smax)) . (3.24)

Then let s0 = 1, and apply the algorithm described above (for fixed s0).
This gives a set of efficient solutions for the case s0 = 1, and corresponding EBO-values:

F (1, 0), F (1, 1), · · · , F (1, smax − 1). (3.25)

The restricted efficient curve for the case s0 = 1 is then the piecewise linear curve between
the smax points

(c, F (1, 0)) , (2c, F (1, 1)) , · · · , (smaxc, F (1, smax − 1)) . (3.26)

This is repeated for s0 = 2, · · · , smax.
Note that the restricted efficient curve for the case s0 = smax consists of a single point
(smaxc, F (smax, 0)).

We have now obtained smax + 1 curves, each corresponding to a fixed value on s0 A natural
curve for the complete model, where s0 is not fixed, is then the piecewise linear curve between
the smax + 1 points

(0, F (0)) , (c, F (1)) , · · · , (smaxc, F (smax)) , (3.27)

where
F (`) = min

s0
{F (s0, `− s0) | 0 ≤ s0 ≤ `} , ` = 0, 1, · · · , smax. (3.28)
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Note that F (`) is the minimum value of EBO0(s0, s) if C(s0, s) is required to be ≤ c`.
If this curve is convex, then it is also the efficient curve for Model 3. Otherwise, the efficient
curve is obtained by generating the southwestern boundary of the convex hull of the smax + 1
points in (3.27). This is an easy task.

3.6 Several LRU in Model 3

It is easy to extend the model above to cover the case where there are several different types
of LRU:s, denoted LRU1, . . . ,LRUm.

In that case, one considers one LRUj at a time, and determines the efficient curve for each
LRUj using the method described above. This results in m curves. Thereafter, we determine
a total efficient curve based on all the LRUj :s. This is done by marginal allocation, i.e.,
the total efficient curve is constructed from line segments from the previously generated
efficient curves of the individual LRUj :s (It is constructed from left to right, starting with
no inventory and then adding the LRU corresponding to the first steepest segment, then the
second-steepest, etc.).
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4 Model 4 (one base, one LRU, several SRU)

In this Multi-indenture model we only have one type of LRU, here referred to as aircraft-
engine, but I different types of SRU:s (shop-replaceable units), called SRU1, . . . ,SRUI .

When an airplane with a defect engine arrives at a base, the engine is immediately replaced
by a new engine from the inventory of spare engines, unless the inventory is empty. If there
are no engines in the inventory that can replace the defect engine, a back order is generated
at the base. The aircraft from which the defect engine originated then becomes temporarily
inoperative.

Aircrafts with an engine (LRU) in need of repair arrive according to a Poisson process with
intensity λ0. Each defect LRU is assumed to have an error on exactly one of its I SRU:s,
which means that defect units of SRUi arrive to the base according to a Poisson process with
intensity λi , where λ1 + . . .+ λI = λ0.

The process of repairing a defect engine is assumed to consist of two steps. Step 1 consists of
troubleshooting in order to identify the defect SRUi and taking apart the engine to remove
that particular SRUi. Step 2 consists of taking a functioning SRUi from the inventory,
mounting it and conducting subsequent tests to make sure the engine works. If there are no
units in the inventory of the requested SRUi there will be a resulting back order of SRUi.
Defect SRU:s are repaired. The repair times are assumed to be independent stochastic random
variables.

Notations:

Ti = The average repair time for SRUi .
T0 = The repair time for a defect engine, provided that the SRUi that is needed is available
in the inventory. (We assume that this time is independent of i)

T0 = T
(1)
0 + T

(2)
0 , where T

(i)
0 is the part of the total repair time T0 that corresponds to Step

i in the repair process (see above).

Xi = the number of defect SRUi:s in the workshop.
X0 = the number of defect engines in the workshop.
si = the number of spare units of SRUi .
s0 = the number of spare units of LRU (i.e., engines).

Since the repair times for SRUi are independent (and equally distributed for a fixed i) it
follows from Palm’s theorem that Xi is a Poisson distributed random variable with E[Xi] =
λiTi. This means that EBOi(si) = E[(Xi − si)+], i.e., the average number of back orders of
SRUi, can be computed with the same type of recursive equations that was used in Model 1.
If needed, one can also compute VBOi(si) = Var[(Xi − si)+].

Now consider X0, which can be written as X0 = Y + Z, where
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Y = the number of defect engines that have been received at the base in the last T0 time
units,

Z = the number of defect engines that were received at the base more than T0 time units

ago, but that were still waiting for a SRU T
(2)
0 time units ago.

Y is Poisson distributed with expected value and variance = λ0T0.

Z has the same distribution as

I∑
i=1

(Xi − si)+, because every back order of some SRUi gives

rise to a prolonged waiting time for some defect engine.

This leads to

E[Z] =
I∑
i=1

EBOi(si) . (4.1)

Moreover, the number of back orders of various SRUi:s are independent. Hence,

Var[Z] =

I∑
i=1

VBOi(si) . (4.2)

Thus, it follows that

E[X0] = λ0T0 +
I∑
i=1

EBOi(si) , (4.3)

Var[X0] = λ0T0 +
I∑
i=1

VBOi(si) . (4.4)

In the METRIC model one makes the assumption (approximation) that the repair times for
defect engines are independent random variables, which after using Palm’s theorem gives that
X0 is a Poisson distributed random variable with expected value given by (4.3). This, in turn,
gives that it is possible to compute EBO0(s0) = E[(X0 − s0)+], i.e., the average number of
inoperative aircrafts at the base, by using the same type of recursive equations that was used
in Model 1. However, note that since E[X0] depends on s = (s1, . . . , sI)

T, so will EBO0(s0).
We will therefore use the notation EBO0(s0, s).

If the assumption of the METRIC model had been correct, then the variance and the expected
value of X0 would have been the same. However, this is not the case if at least one si > 0,
since

VBOi(si) > EBOi(si), for si > 0, (4.5)

and hence, according to (4.3) and (4.4),

Var[X0] > E[X0], if any si > 0. (4.6)
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Still, if si = 0 for all i = 1, . . . , I, then, according to above, it holds that

Var[X0] = E[X0] = λ0T0 +
I∑
i=1

λiTi , if all si = 0. (4.7)

In the VARI-METRIC model one instead assumes that if any si > 0 then X0 is a trans-
lated negative binomial distributed random variable with expected value given by (4.3) and
variance given by (4.4). More specifically, one assumes that if at least one si > 0 then

P (X0 = 0) =

(
1

V0

) µ0
V0−1

, and (4.8)

P (X0 = k + 1) =
µ0 + (V0 − 1)k

V0(k + 1)
· P (X0 = k), k = 0, 1, 2, . . . (4.9)

where µ0 = E[X0] and V0 =
Var[X0]

E[X0]
.

If all si = 0, it is still assumed that X0 is a Poisson distributed random variable with expected
value and variance given by (4.7).

It is now possible to compute EBO0(s0, s) = E[(X0 − s0)
+], i.e., the average number of

inoperative aircrafts at the base, by using almost the same type of recursive equations as
in the METRIC model. The only difference is that one now uses (4.8) and (4.9) in the
computation of the probabilities for the number of engines in the workshop (if some si > 0).

Efficient curve for Model 4

We will here describe a heuristic method for determining the efficient curve of Model 4.
There is a theoretical risk of missing one or a few efficient solutions, but in practice, this
rarely happens. We assume that the order that the SRU:s are distributed in does not depend
on how many LRU:s we have. So first this order is determined and then in a second step the
LRU inventory level is determined.

Let c0 = the cost per spare engine and let c = (c1, . . . , cI)
T, where ci = the cost per spare

unit of SRUi.

First determine the efficient curve for the distribution of spare units of different SRU:s. This
is done using the marginal allocation algorithm from Model 2. The result is a piecewise linear
convex curve in a coordinate system where the horizontal axis shows cTs while the vertical
axis shows

∑
EBOi(si). Furthermore, the corresponding efficient solutions, here denoted

s(k), k = 0, 1, 2, . . ., where the first one is s(0) = (0, . . . , 0)T , are obtained.

20



One now set s = s(0) and computes EBO0(s0, s
(0)) for growing values of s0, starting at s0 = 0.

This gives a piecewise linear curve in a coordinate system where the horizontal axis shows
c0s0 + cTs(0) while the vertical axis shows EBO0(s0, s

(0)). The curve is saved.

Next, one set s = s(1) and computes EBO0(s0, s
(1)) for growing values of s0, starting at

s0 = 0. This gives a new piecewise linear curve, this time in a coordinate system where the
horizontal axis shows c0s0 + cTs(1) while the vertical axis shows EBO0(s0, s

(1)). This curve
is also saved.

The procedure is repeated for s = s(2), s = s(3), etc., until cTs(k) > Cmax.

One has now obtained a number of curves, each one corresponding to a given s = s(k). Finally,
the lower convex envelope(also referred to as the convex hull) corresponding to these curves
is constructed. The obtained piecewise linear convex curve is the efficient curve of Model 4.
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5 Model 5 (a central depot and several bases, one LRU, sev-
eral SRU)

In Model 5, we will combine Models 3 and 4.

As in Model 4, we here have one type of LRU, referred to as “aircraft engine”, with I different
SRU:s, referred to as SRU1, . . . ,SRUI . As in Model 3, we have J bases, each with a local
spare part supply (for engines), and one central depot with a repair workshop and a central
spare part supply (for engines and SRU:s).

As no repairs are done at the bases, Model 4 will only enter in the modeling of the depot.

Decision variables in the model:

s0j = the number of spare engines at base j.
s00 = the number of spare engines at the depot.
si0 = the number of spare units of SRUi at the depot.

Parameters of the model:

λ0j = the intensity with which defect engines arrive at base j.
λ00 = the intensity with which defect engines arrive to the workshop.
λi0 = the intensity with which defect units of SRUi arrive to the workshop.

(λ0j and λ00 correspond to the parameters λj and λ0 in Model 3, while λi0 corresponds to
the parameter λi in Model 4. It holds that

∑
j λ0j = λ00 and

∑
i λi0 = λ00.)

Ti0 = the average repair time for SRUi.
Tbd = the time it takes to transport a defect engine from a base to the depot.
Tdb = the time it takes to transport a functioning engine from the depot to a base.
Trep = the repair time for a defect engine, provided that the SRUi that is needed is available

in the inventory.
T00 = Tbd + Trep.

Stochastic variables in the model:

Xi0 = the number of defect SRUi in the workshop.
X00 = the number of defect engines in, or on their way to the workshop.
X0j = the number of defect engines that have been sent from base j to the workshop, but
for which replacement engines have still not been received at the local inventory at base j (=
the number of engines in the pipeline at base j).

The expected values for these random variables can be computed in exactly the same way as
the corresponding expected values in Models 3 and 4. The following result is obtained.
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E[Xi0] = λi0Ti0 , (5.1)

E[X00] = λ00T00 +
I∑
i=1

EBOi0(si0) , (5.2)

E[X0j ] = λ0j(Tdb +
EBO00(s00)

λ00
) . (5.3)

Efficient curve for Model 5

Introduce the following vectors to describe the distribution of spares:

s∗0 = (s10, . . . , sI0), s0∗ = (s01, . . . , s0J) and s = (s∗0 , s00 , s0∗).

Furthermore, introduce the following functions of s:

F (s) =
∑

j EBO0j and C(s) =
∑

i ci0si0 + c00s00 +
∑

j c0js0j .

These will be the two objective functions of our multiobjective optimization problem.

We now wish to determine the efficient curve (and the associated efficient solutions) for
the given model, i.e., for the convex curve, with F (s) on the vertical axis and C(s) on
the horizontal axis, that describes the minimal average number of inoperative aircrafts as a
function of resources invested in spare units.

It is generally very difficult to implement this if one wants to prove that the generated curve
is correct. However, the following method will in most cases give a very good approximation
of the correct curve.

Next we present a three step procedure based on determining the distribution of the SRU:s
first, then LRU:s at the depot and SRU:s and finally determining also the distribution of
LRU:s at the bases.

Step 1:

First assume that s = (s∗0 , 0 , 0) , i.e., s00 = 0 and s0j = 0 for all j.

Then EBO00 = E[X00] and EBO0j = E[X0j ] .

Given the equations for the expected values we get:

F (s) = λ00(Tbd + Trep + Tdb) +

I∑
i=1

EBOi0(si0) . (5.4)

The assumption of independent workshop times gives thatXi0 is a Poisson distributed random
variable with E[Xi0] = λi0Ti0. Hence, EBOi0(si0) can easily be computed.
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The first step in the method is to apply margin allocation to spare units of SRU:s at the
depot, i.e., to gradually increase the values of the variables si0 in the order that gives the
largest reduction of

∑
i EBOi0(si0) per invested monetary unit. This results in a convex

curve, with F (s∗0 , 0 , 0) on the vertical axis and C(s∗0 , 0 , 0) on the horizontal axis.

At the same time, a set of efficient solutions {s(k)∗0 }, k = 1, 2, 3, . . . is obtained.

Step 2:

Now assume that s = (s
(k)
∗0 , s00 , 0) , i.e., s∗0 = s

(k)
∗0 = is one of the efficient solutions from

Step 1, and s0j = 0 for all j.

Then EBO0j = E[X0j ], and with the given equations for expected values inserted we get

F (s) = λ00Tdb + EBO
(k)
00 (s00) , (5.5)

where EBO
(k)
00 (s00) is EBO00(s00) for the case when s∗0 = s

(k)
∗0 .

The assumption on independent repair times gives that X00 is a Poisson distributed random
variable with expected value given by (5.2). This, in turn, makes it possible to compute

EBO
(k)
00 (s00) quite easily.

Now, for each point s
(k)
∗0 , EBO

(k)
00 (s00) is computed for increasing values of s00, starting from

s00 = 0.

For each point s
(k)
∗0 , the procedure renders a convex curve with F (s

(k)
∗0 , s00 , 0) on the vertical

axis and C(s
(k)
∗0 , s00 , 0) on the horizontal axis.

The convex hull of the complete set of curves is then computed.

This results in a new convex curve, with F (s∗0 , s00 , 0) on the vertical axis and C(s∗0 , s00 , 0)
on the horizontal axis.
At the same time, a set of efficient solutions {(s∗0 , s00)(`)} , ` = 1, 2, 3, . . . are obtained.

Note that so far, the procedure is exactly the same as for Model 4.

Step 3:

Now assume that s = ((s∗0 , s00)
(`) , s0∗) , i.e., (s∗0 , s00) = (s∗0 , s00)

(`) = one of the efficient
solutions from Step 2.

Then it holds that
F (s) =

∑
j

EBO
(`)
0j (s0j) , (5.6)

where EBO
(`)
0j (s0j) is EBO0j(s0j) for the case (s∗0 , s00) = (s∗0 , s00)

(`).

The assumption on independent pipeline times gives that each X0J is a Poisson distributed
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random variable with expected value given by (5.3). From this fact, it follows that EBO
(`)
0j (s0j) ,

can be easily computed.

For each point (s∗0 , s00)
(`) one now carry out a marginal allocation of spare engines at the

bases, i.e., one gradually increases the values of the variables s0j in the order which gives the

greatest reduction in
∑

j EBO
(`)
0j (s0j) per invested money unit.

For each point (s∗0 , s00)
(`) one obtains a convex curve, with F ((s∗0 , s00)

(`) , s0∗) on the
vertical axis and C((s∗0 , s00)

(`) , s0∗) on the horizontal axis.

The convex hull for the complete set of curves is computed.

This gives a new convex curve, with F (s∗0 , s00 , s0∗) on the vertical axis and C(s∗0 , s00 , s0∗)
on the horizontal axis. At the same time, a set of efficient solutions {s(q)} = {(s∗0 , s00 , s0∗)(q)},
for q = 1, 2, 3, . . ., is obtained.

This is our requested efficient curve and our efficient solutions.

5.1 Generalization of Model 5 to several LRU

We now extend Model 5, by assuming that there are several different types of LRU:s, each
with an associated set of SRU:s, and that an airplane gets grounded if there is a back order
on any of these LRU:s at some base.

The efficient curve for this extended model is as before the convex curve that describes the
minimal average number of inoperative aircrafts as a function of resources invested in spare
units. However, we will now have

∑
k

∑
j EBO0jk on the vertical axis and

∑
k Ck(sk) on

the horizontal axis, where EBO0jk denotes the average number of back orders of LRU:s of
type k at base j, while Ck(sk) denotes the cost of spare units of LRU:s of type k, and the
belonging SRU:s.

This efficient curve can be obtained as follows:

For each LRU family (i.e., an LRU-type with its associated SRU:s) the Steps 1-3 in Model 5
above are performed. The result is a convex curve for each LRU family.

Then, margin allocation based on these curves is done. This means that line segments from
the obtained curves (first the steepest segment, then the second steepest, etc..) are used to
construct a new convex curve.

This new convex curve is the efficient curve of the extended model. At the same time, one
has also received a set of efficient solutions.
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6 APPENDIX: Palm’s Theorem

Theorem: Assume that defect units arrive to a workshop according to a Poisson process
with an intensity of λ units per time unit. Furthermore, assume that the repair times for the
defect units are independent, equally distributed stochastic random variables with expected
value T time units. Then, the number of defect units in the workshop is a Poisson distributed
random variable with expected value λT units.

Remark: The “ Repair Time” is the time from that a malfuctioning item arrives at the
workshop until the same item has been repaired and leaves the workshop.

Sketch of Proof:

Let τ denote the repair time for a defect unit. We will only prove the Theorem for the case
where τ is a discrete stochastic random variable with finite range space {t1, . . . , tN} (as this
range space can be chosen arbitrarily “close”, it is not hard to believe that the theorem would
apply in the general case as well). Assume that t1, . . . , tN are known and represent possible
repair times and that pi = P (τ = ti) are the corresponding probabilities which are also known
and satisfy

∑
pi = 1 and

∑
piti = T .

We can then consider the situation as follows: Defect units arrive according to a Poisson
process with intensity λ. For each arriving unit, the length of the repair time is picked ran-
domly. If the result of the randomization is that the repair time will be ti (which occurs with
probability pi) then the unit is placed in the “i:th sub-workshop” which has a deterministic
repair time = ti. When the unit leaves this sub-workshop ti time units later, it leaves the
actual workshop as well.

It is a well known property of Poisson processes that the procedure above leads to defect
units arriving at the N different sub-workshops according to independent Poisson processes
with intensities λi = pim, for i = 1, . . . , N .

Let Xi = the number of units in the i:th sub-workshop. Then Xi = the number of units that
arrived to the i:th sub-workshop during the last ti time units. According to another well-
known property of Poisson processes, this number is a Poisson distributed random variable
with expected value λiti.

Let X = the number of units in the real workshop. As each arriving unit is placed in
of one sub-workshop, it follows that X =

∑
Xi, where the Xi:s according to above are

independent Poisson distributed random variables. According to a well-known property of
Poisson distributions, this implies that X is a Poisson distributed random variable with
expected value

∑
λiti = m

∑
piti = mT , which is exactly what we wanted to show.

26


