On the botanic model of plant growth with an intermediate vegetative-reproductive stage
Ilya Ioslovich and Per-Olof Gutman
2003-08-16

Abstract
The application of dynamic optimization to mathematical models of ontogenetic biological growth has been the subject of much research, see e.g Cohen (1971). Kozłowski and Ziółko (1988), and Ziółko and Kozłowski (1995) presented a model with **gradual transition from vegetative to reproductive growth**. The central point of their model is a **mixed state control constraint on the rate of reproductive growth** which leads to a mixed vegetative-reproductive growth period. Their model is modified here in order to take into account the difference of photosynthesis use efficiency when energy is accumulated in the vegetative, and in the reproductive organs of the plant, respectively. The **correct mathematical solution of the optimal control problem** is presented, and the numerical example from Kozłowski and Ziółko (1988) is solved correctly. The influence of the length of the growing season, the relative photosynthesis use efficiency, and the potential sink demand of the reproductive organs on the location and duration of the mixed vegetative-reproductive period is investigated numerically.
Contents

- Why do plants behave as they do?
- The Kozłowski and Ziółko (KZ) model
- The Modified Botanic Model (MBM)
- Climate dependence in MBM
- Climate dependent MBM
- Intuitive solutions
- Pontryagin’s Maximum Principle
- The Hamiltonian
- The optimal solution in the veg-mix-reproductive case
- The mixed period
- The reproductive period
- The Kozłowski and Ziółko (1988) example
- Numerical methods
- The optimal solution
- Discussion
Why do plants behave as they do?

- Darwin (1859): **natural selection leads to an optimization process**, whereby organisms better fitted to their environment have a selective advantage.

- D. Cohen (1971) considered a **linear optimization model**, which **maximizes the amount of seeds** in a given growth period, whereby the optimal solution has two distinct intervals:
 - first, in the vegetative period, **all photosynthetic production is allocated to the vegetative organs** (leaves, stems, and roots).
 - then, in the reproductive period, **all material is allocated to the fruits/seeds**.

- However, multiple biological observations show that **the switch from the pure vegetative to the pure reproductive stage is not abrupt, but smooth, or gradual.**
Why do plants behave as they do?

- Kozłowski and Ziółko (1988), and Ziółko and Kozłowski (1995), considered a nonlinear model with a constraint for the maximal value of reproductive accumulation to be the reason for such a gradual transition.

- Kozłowski and Ziółko, however, solved their ensuing optimal control problem incorrectly.

- Here, the correct mathematical solution of the KZ-problem is given.

- Moreover, we introduce different photosynthesis use efficiency for vegetative and reproductive growth, see e.g. also Seginer and Ioslovich (1998).

- We investigate numerically the influence of the climate on the lengths of the vegetative, mixed, and reproductive periods.
The Kozłowski and Ziółko (KZ) model

\[
\begin{align*}
\frac{dx}{dt} &= \left(1 - u(t)\right) f(x(t)) \\
\frac{dy}{dt} &= u(t) f(x(t)) \\
\end{align*}
\]

\[
\begin{align*}
x(0) &= x_0, \quad y(0) = 0 \\
0 \leq u(t) \leq 1 \\
u(t) f(x(t)) &\leq g(y(t)) \\
y(T) &\rightarrow \text{max} \\
\end{align*}
\]

\(x(t)\) = energy of vegetative organs [\(\text{cal/m}^2\)],
\(y(t)\) = energy of reproductive organs [\(\text{cal/m}^2\)],
\(u(t)\) = partitioning factor control variable \([-\]

\(f(x)\) = available power due to photosynthesis, a smooth and increasing function of \(x\) [\(\text{cal/m}^2/\text{day}\)],

\(g(y)\) = constraint on the power for accumulation in the reproductive organs, or "potential sink demand of the reproductive organs", a smooth and increasing function of \(y\) [\(\text{cal/m}^2/\text{day}\)],

\(T\) = growing season [\(\text{days}\)].
The Modified Botanic Model (MBM)

\[
\begin{align*}
\frac{dx}{dt} &= k \left(1 - u(t) \right) f(x(t)) \\
\frac{dy}{dt} &= u(t) f(x(t)) \\
x(0) &= x_0 \quad y(0) = 0 \\
0 &\leq u(t) \leq 1 \\
u(t) f(x(t)) &\leq g(y(t)) \\
y(T) &\rightarrow \text{max}
\end{align*}
\]

\(x(t) = \) energy of vegetative organs [kcal/m²],
\(y(t) = \) energy of reproductive organs [kcal/m²],
\(u(t) = \) partitioning factor control variable [-],
\(f(x) = \) available power due to photosynthesis, a smooth and increasing fcn of \(x \) [kcal/m²/day],
\(g(y) = \) constraint on the power for accumulation in the reproductive organs, or ”potential sink demand of the reproductive organs”, a smooth and increasing function of \(y \) [kcal/m²/day],
\(T = \) growing season [days].

- \(k = k_v/k_r = \) relative photosynthesis use efficiency coefficient [-],
- climate dependence.
Climate dependence in MBM

Light and temperature

\[f = m(t)F(x), \text{ where} \]
\[m(t) = \text{photosynthesis flux} \quad [\text{kcal/m}^2/\text{day}] \]
\[F(x) = \text{light interception factor} \quad [-] \]

\[g = s(\Theta(t))G(y) \text{ where} \]
\[s(\Theta(t)) \text{ is an increasing function of} \quad \text{temperature} \ \Theta, \quad [\text{kcal/m}^2/\text{day}], \]
\[G(y) \quad [-]. \]

Ref: Seginer and Ioslovich (1998)

Biological time

Assume a strong correlation between mean daily temperature and photosynthesis, namely

\[\frac{m(t)}{s(\Theta(t))} = k_c \]

Then biological time \(\tau \) can be introduced via

\[\frac{d \tau}{dt} = m(t) \]

\[\cdots \]
Climate dependent MBM

\[
\frac{dx}{d\tau} = k \left(1-u(\tau)\right) F(x) \quad 0 \leq u(\tau) \leq 1
\]

\[
\frac{dy}{d\tau} = u(\tau) F(x) \quad u(\tau) F(x) \leq G(y)/k_c
\]

\[
x(0) = x_0 \quad y(0) = 0 \quad y(\Psi) \rightarrow \text{max}
\]
Intuitive solutions

\[
\frac{dx}{dt} = k \left(1 - u(t) \right) f(x(t)) \\
\frac{dy}{dt} = u(t) f(x(t)) \\
x(0) = x_0, \quad y(0) = 0 \\
0 \leq u(t) \leq 1 \\
u(t) f(x(t)) \leq g(y(t)) \\
y(T) \rightarrow \text{max}
\]

Depending on \(T, f, g \), one can envisage:

- \(u = 0 \) veg
- \(u = g/f < 1 \) mix
- \(u = 1 \) repr

![Diagram showing different stages and conditions](image)

- Since \(g(0) < f(x(T_1)) \)
- Since we assume that \(g(0) < f(0) \)

In any case, there is no "going back" to a previous stage.
Pontryagin’s Maximum Principle

\[\frac{dx}{dt} = k \left(1 - u(t) \right) f \left(x(t) \right) \]
\[\frac{dy}{dt} = u(t) f \left(x(t) \right) \]
\[x(0) = x_0, \quad y(0) = 0 \]
\[0 \leq u(t) \leq 1 \]
\[u(t) f \left(x(t) \right) \leq g \left(y(t) \right) \]
\[y(T) \longrightarrow \max \]

- The costate variables represent the sensitivities of the criterion function to the state variables:

\[p_x(t) = \frac{\partial y(T)}{\partial x(t)} \]
\[p_y(t) = \frac{\partial y(T)}{\partial y(t)} \]

- Clearly, the transversality conditions at \(t = T \) are:

\[p_x(T) = 0 \]
\[p_y(T) = 1 \]
The Hamiltonian

\[\frac{dx}{dt} = k \left(1 - u(t) \right) f(x(t)) \]
\[\frac{dy}{dt} = u(t) f(x(t)) \]
\[x(0) = x_0, \quad y(0) = 0 \]

\[0 \leq u(t) \leq 1 \]
\[u(t) f(x(t)) \leq g(y(t)) \]

\[y(T) \rightarrow \max \]

- The Hamiltonian, \(H \), has to be maximized w.r.t. \(u \), given the constraints,

\[H = p_x(1-u)kf(x) + p_yuf(x) = uS + kp_x f(x) \]

where the switching function is

\[S = p_y - kp_x \]

- \(S < 0 \Rightarrow u = 0 \) (lower bound, \(v \))
- \(S > 0 \Rightarrow u = \min(g/f, 1) \) (upper bound, \(m/r \))
The optimal solution in the v-m-r case

- It is natural to assume that

\[p_x(0) = \frac{\partial y(T)}{\partial x(0)} > 0 \quad \quad p_y(0) = \frac{\partial y(T)}{\partial y(0)} > 0 \]

such that \(S(0) < 0 \Rightarrow u(0) = 0 \), i.e. the growth starts with a \textit{vegetative period} until \(t = T_1 \) when \(S(T_1) = 0 \).

- Costate equations during the veg. period:

\[
\frac{dp_x}{dt} = - \frac{\partial H}{\partial x} \left(uS + kp_x \right) \frac{df}{dx} = -kp_x \frac{df}{dx} < 0 \Rightarrow p_x \not\rightarrow 0
\]

\[
\frac{dp_y}{dt} = - \frac{\partial H}{\partial y} = 0 \Rightarrow p_y = p_y(0) > 0 \quad \text{(constant)}
\]

- Hence, \(S(t) \) increases, with \(S(T_1) = 0 \)
The mixed period

- Mixed state-control constraint active

\[H = \left(uS + kp_x \right) f(x) - \lambda \left(uf(x) - g(y) \right), \quad \lambda \geq 0 \]

\[\frac{\partial H}{\partial u} = 0 \Rightarrow \lambda = S \quad \frac{\partial H}{\partial \lambda} = 0 \Rightarrow u = \frac{g(y)}{f(x)} \]

\[\frac{dp_x}{dt} = -\frac{\partial H}{\partial x} = -k p_x \frac{df}{dx} < 0 \Rightarrow p_x \neq 0 \quad \text{as above} \]

\[\frac{dp_y}{dt} = -\frac{\partial H}{\partial y} = -\lambda \frac{dg}{dy} = -S \frac{dg}{dy} < 0 \]

\[\frac{dS}{dt} = -S \frac{dg}{dy} + k^2 p_x \frac{df}{dx} > 0 \quad \text{when } S \text{ near } 0, \Rightarrow S > 0 \]

- At \(t = T_2, f(x(T_2)) = g((y(T_2))), \) switch to reproductive period

\[\begin{align*}
\frac{dx}{dt} &= k \left(1 - u(t) \right) f(x(t)) \\
\frac{dy}{dt} &= u(t) f(x(t)) \\
x(0) &= x_0, \quad y(0) = 0 \\
0 &\leq u(t) \leq 1 \\
u(t)f(x(t)) &\leq g(y(t)) \\
y(T) &\rightarrow \max \\
\end{align*} \]
The reproductive period

\[
\frac{dx}{dt} = k \left(1 - u(t)\right) f(x(t))
\]
\[
\frac{dy}{dt} = u(t) f(x(t))
\]
\[
x(0) = x_0, \quad y(0) = 0
\]

\[0 \leq u(t) \leq 1\]

\[u(t) f(x(t)) \leq g(y(t))\]

\[y(T) \rightarrow \max\]

- The mixed state-control constraint is \textit{inactive}

\[
H = \left(uS + kp_x\right)f(x)
\]

\[
\max_u H \Rightarrow u = 1 \quad \text{since } S > 0, \quad H = p_y f(x)
\]

\[
\frac{dp_y}{dt} = -\frac{\partial H}{\partial y} = 0, \quad \text{hence } p_y(t) = 1 \quad \text{for } t \in [T_2, T]
\]

\[
\frac{dp_x}{dt} = -\frac{\partial H}{\partial x} = -p_y \frac{\partial f}{\partial x} < 0 \quad \text{and } p_x(T) = 0
\]

- \(S(t)\) remains \(>0\) for \(t \in [T_2, T]\)

\[
S = p_y - kp_x
\]

\(S > 0\) \quad \text{and} \quad u = \min(g/ff, 1) = 1

\[
p_x(T) = 0, \quad p_y(T) = 1
\]
The KZ88 example

- $k=1$, $x(0)=100000$ cal/m2, $y(0)=1$ cal/m2, $T=100$ days
- $f(x)=2x^{0.67}$ cal/(m2day), $g(y)=2x^{0.80}$ cal/(m2day),
Numerical methods

- E.g. by the *shooting method*:
 - guess $p_x(0)$ and $p_y(0)$
 - integrate equations until $t=T$
 - check that transversality conditions $p_x(T) = 0$ and $p_y(T) = 1$ are satisfied
- In the paper a smarter taylor-made method is suggested.
The optimal solution

- $T_1 = 29.4$ days, $T_2 = 49.15$ days, $T = 100$ days
- $y(T_2) = 55.6$ kcal/m2 $y(T) = 691.7$ kcal/m2
- $x(T_1) = 298.4$ kcal/m2 $x(T_2) = 463.4$ kcal/m2
- $p_x(T_1) = 1.34$
The optimal solution
The optimal solution
The optimal solution
Numerical experiments

• Increasing k or T \Rightarrow delays T_1 and increases $T_2 - T_1$
• Decreasing $g(y)$ \Rightarrow advances T_1 and increases $T_2 - T_1$
• Increasing photosynthesis \Rightarrow delays T_1 and increases $T_2 - T_1$
• Increasing temperature \Rightarrow delays T_1 but decreases $T_2 - T_1$
Discussion

- The Modified Botanic Model is introduced.
- The correct solution of the optimal control problem using the KZ and MBM models are given:
 - Mixed state-control constraint
 - Pontryagin et al. (1966), Krotov and Gurman (1973)
- Numerical experiments are performed, but comparisons of MBM with botanical data remain.