TECHNION

On smooth optimal control determination

Ilya Ioslovich and Per-Olof Gutman 2004-02-20

Abstract

When using the Pontryagin Maximum Principle in optimal control problems, the most difficult part of the numerical solution is associated with the non-linear operation of the maximization of the Hamiltonian over the control variables. For a class of problems, the optimal control vector is a vector function with continuous time derivatives. A method is presented to find this smooth control without the maximization of the the Hamiltonian. Three illustrative examples are considered.

Faculty of Civil and Environmental Engineering

P-O Gutman 2004-02-20

TECHNION Israel Institute of Technology				
Classical solution				
$\int_{0}^{T} f_{0}(x, u) dt \rightarrow \min (1)$ $\frac{dx}{dt} = f(x, u), \qquad (2)$ $x(0) = x_{0}, x(T) = x_{T} \cdot (3)$ $H = p^{T} f(x, u) - f_{0}(x, u). \qquad (5)$ $\frac{dp}{dt} = -\frac{\partial H}{\partial x}^{T} = -\frac{\partial f}{\partial x}^{T} p + \frac{\partial f_{0}}{\partial x}^{T} \qquad (6)$	If an optimal solution (x^*, u^*) exists, then, by PMP, it holds that $H(x^*, u^*, p^*) \ge H(x^*, u, p^*)$ implying here by smoothness, and the presence of constraint (3) only, that for $u = u^*$, $\frac{\partial H}{\partial u} = 0.$ (7) or, with (5) inserted into (7), $p^T \frac{\partial f}{\partial u} - \frac{\partial f_0}{\partial u} = 0$ (8) where $\partial f_0 / \partial u$ is $1 \times m$, and $\partial f / \partial u$ is $n \times m$. To find (x^*, u^*, p^*) the two point boundary value problem (2)-(6) must be solved. At each t, (8) gives u^* as a function of x and			
<i>p</i> . (8) is often non-linear, and computationally costly.				
•	p(0) has as many unknowns as given end conditions $x(T)$.			
Faculty of Civil and Environmental Engineering P-O Gutman 2004-02-20				

TECHNION Israel Institute of Technolog	IY
The	new idea, cont'd
$\begin{bmatrix} \int_{0}^{T} f_{0}(x, u)dt \to \min & (1) \\ \frac{dx}{dt} = f(x, u), & (2) \\ x(0) = x_{0}, x(T) = x_{T}. & (3) \\ H = p^{T}f(x, u) - f_{0}(x, u). & (5) \\ \frac{dp}{dt} = -\frac{\partial H^{T}}{\partial x} = -\frac{\partial f^{T}}{\partial x}^{p} + \frac{\partial f_{0}}{\partial x}^{T} & (6) \\ \frac{\partial H}{\partial u} = 0. & (7) \\ p^{aT}\frac{\partial f^{a}}{\partial u} + p^{bT}\frac{\partial f^{b}}{\partial u} - \frac{\partial f_{0}}{\partial u} = 0 (9) \\ p^{a} = \left \frac{\partial f^{aT}}{\partial u} \right ^{-1} \left \frac{\partial f_{0}}{\partial u} - \frac{\partial f^{bT}}{\partial u} p^{b} \right \stackrel{\Delta}{=} A[x, p^{b}, u]_{(10)} \\ \frac{du}{dt} = B^{-1} \left[-\frac{\partial f^{a}}{\partial x^{a}} A - \frac{\partial f^{d}}{\partial x^{a}} \right]^{-1} \left \frac{\partial f^{a}}{\partial x^{a}} A - \frac{\partial f^{d}}{\partial x^{a}} \right _{q} = 0 (10)$	• Differentiate (10): $\frac{dp^{a}}{dt} = \frac{\partial A}{\partial x}f(x,u) + \frac{\partial A}{\partial u}\frac{du}{dt} + \frac{\partial A}{\partial p^{b}}\frac{dp^{b}}{dt} \qquad (11)$ $B \doteq \frac{\partial A}{\partial u}$ • where <i>B</i> is assumed non-singular. (6) gives $\frac{dp^{a}}{dt} = -\frac{\partial H}{\partial x^{a}}^{T} = -\frac{\partial f^{a}}{\partial x^{a}}^{T}p^{a} - \frac{\partial f^{b}}{\partial x^{a}}^{T}p^{b} + \frac{\partial f_{0}}{\partial x^{a}}^{T} \qquad (12)$ $\frac{dp^{b}}{dt} = -\frac{\partial H}{\partial x^{b}}^{T} = -\frac{\partial f^{a}}{\partial x^{b}}^{T}p^{a} - \frac{\partial f^{b}}{\partial x^{b}}^{T}p^{b} + \frac{\partial f_{0}}{\partial x^{b}}^{T} = S(x, p^{b}, u)$ (12) • (10) into RHS of (12, 13), noting that dp^{a}/dt is given by the RHS of (11) and (12), and solving for du/dt , gives $T^{T}p^{b} + \frac{\partial f_{0}}{\partial x^{a}}^{T} - \frac{\partial A}{\partial x}f(x, u) - \frac{\partial A}{\partial p^{b}}\frac{dp^{b}}{dt}] \doteq F(x, p^{b}, u) \qquad (14)$
Faculty of Civil and Environmental Engineering	P-O Gutman 2004-02-20

TECHNION Israel Institute of Technology Example 1: Rigid body rotation				
Stopping axisymmetric rigid body rotation (Athans and Falb, 1963) $\frac{dx}{dt} = ay + u_1, \qquad (16)$ $\frac{dy}{dt} = -ax + u_2$ $x(T) = 0, y(T) = 0 \qquad (17)$ $J = \frac{1}{4} \int_0^T (u_1^2 + u_2^2)^2 dt \rightarrow \min$ $H = p^T f(x, u) - f_0(x, u). \qquad (5) pa = \left \frac{\partial f a^2}{\partial t} \right ^2$	$p = A = \begin{bmatrix} u_1(u_1^2 + u_2^2) \\ u_2(u_1^2 + u_2^2) \end{bmatrix} \qquad \frac{dp_x}{dt} = ap_y$ $B = \begin{pmatrix} 3u_1^2 + u_2^2 & 2u_1u_2 \\ 2u_1u_2 & u_1^2 + 3u_2^2 \end{pmatrix} \qquad \frac{dp_y}{dt} = -ap_x$ $B^{-1} = \frac{1}{(3[u_1^2 + u_2^2]^2)} \begin{pmatrix} u_1^2 + 3u_2^2 & -2u_1u_2 \\ -2u_1u_2 & 3u_1^2 + u_2^2 \end{pmatrix}$ $\frac{du_1}{dt} = au_2,$ $\frac{du_2}{dt} = -au_1$ (23)			
$\frac{dp}{dt} = -\frac{\partial H}{\partial x}^{T} = -\frac{\partial f}{\partial x}^{T} p + \frac{\partial f_{0}}{\partial x}^{T} \qquad (6) \qquad B \doteq \frac{\partial A}{\partial u}$ $\frac{du}{dt} = B^{-1} [-\frac{\partial f^{a}}{\partial x^{a}}^{T} A - \frac{\partial f^{b}}{\partial x^{a}}^{T} p^{b} + \frac{\partial f_{0}}{\partial x^{a}}^{T} - \frac{\partial A}{\partial x} f(x, u)$ Faculty of Civil and Environmental Engineering	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			

TECHNION Israel Institute of Technolog Example 2: Optimal	spacing for greenho	use lettuce growth
Optimal variable spacing policy (Seginer, Ioslovich, Gutman), assuming constant climate $\frac{dv}{dt} = \frac{v}{W}G(W),$ $J = \int_{0}^{T} \frac{v}{W}c_{R}dt$ (30) $v(T) = v_{T}$ (31) v = aWwith v [kg/plant] = dry mass, G [kg/m ² /s] net photosynth- esis, W [kg/m ²] plant density (control), a [m ² /plant] spacing, v_{T} marketable plant mass, and final time T [s] free.	$H = \frac{v}{W} (pG(W) - c_R) (32) \bullet$ $\frac{\partial H}{\partial W} = -\frac{v}{W^2} (pG(W) - c_R) + \frac{vp}{W} \frac{\partial G}{\partial W}$ • <i>p</i> is obtained from $\frac{\partial H}{\partial W} = 0,$ $p = \frac{c_R}{G(W) - W \frac{\partial G}{\partial W}} (34) \bullet$ • $\frac{dp}{dt} = -\frac{\partial H}{\partial v} = -\frac{pG(W) - c_R}{W} (35)$ • $(34), (35) \Rightarrow$ • $\frac{dp}{dt} = -\frac{c_R \frac{\partial G}{\partial W}}{(G - W \frac{\partial G}{\partial W})} (36)$ • Differentiating (34), $\frac{dp}{dt} = \frac{dW}{dt} \frac{c_R W \frac{\partial G}{\partial W^2}}{(G - W \frac{\partial G}{\partial W})^2} (37)$	$(36), (37) \Rightarrow$ $\frac{dW}{dt} = -\frac{\frac{\partial G}{\partial W}(G - W\frac{\partial G}{\partial W})}{W\frac{\partial G}{\partial W^2}} (38)$ Free final time \Rightarrow $H(T) = 0 (39)$ Then, at $t=T$, $(39,32,34)$: $v\frac{c_R\frac{\partial G}{\partial W}}{(G - W\frac{\partial G}{\partial W})} = 0 (40)$ $(38, 40) \text{ show that } \forall t,$ $W^* \text{ satisfies}$ $\frac{\partial G(W^*)}{\partial W^*} = 0$ For free final time, (38) also w/o maximization of the Hamiltonian, I&G 99
Faculty of Civil and Environmental Engineering		P-O Gutman 2004-02-20

