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Abstract

When using the Pontryagin Maximum Principle in optimal control
problems, the most difficult part of the numerical solutionis
associated with the non-linear operation of the maximization of
the Hamiltonian over the control variables. For a class of
problems, the optimal control vector is a vector function with
continuous time derivatives. A method is presented to find this
smooth control without the maximization of the the Hamiltonian.
Three illustrative examples are considered.
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The classical optimal control problem

e Consider the classical optimal

control problem (OCP),

Pontryagin et al. (1962), Lee

and Marcus (1967), Athans
and Falb (1966), etc.

T
/ fo(z, u)dt — min
0

(z,u),

z(0) = zo, 2(T) = 27.

+ fo(x,u), f(x,u) aresmooth
in all arguments.

e TheHamiltonianis
H=p"f(x,u) — fo(z,u).

where it holds for the
column vector p(t)eR" of

(5)
(1)

(2) co-state variables, that
3 dp _ 0HT _afT afT
W #="% e o O

the control variables u(t)eR™,
the state variables x(t)eR", and
f(x,u)eR" are column vectors,

according to the Pontryagin

with m=n.

Maximum Principle (PMP).
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T
/0 fo(z,u)dt — min (1)

H = p" f(e,u) = fo(z,u). (5)

dy__on” __ofT

dt ~ oz oz

%T

P ox

(6)

Classical solution

If an optimal solution (x*,u*) exists, then, by
PMP, it holds that H(x*, u*, p*)= H(x*, u, p*)
implying here by smoothness, and the presence
of constraint (3) only, that for u= u*,

o . (7)
or, with (5) inserted into (7),
pdi, O _p (8)
ou  Ou

where of/ou is 1xm, and of/du is nxm.
Tofind (x*, u*, p*) the two point boundary
value problem (2)-(6) must be solved.

At each t, (8) givesu* asafunction of x and
p. (8) isoften non-linear, and
computationally costly.

p(0) has as many unknowns as given end
conditions x(T).
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The new idea without optimization w.r.t. u
T . * Wenotethat (8) islinear in p.
/0 fo(x, u)dt = min (1)| o Assume that rank(8f/du)=m = 3 anon-

d singular mxm submatrix. Then, re-index the
& — f(z,u), (2| corresponding vectors

dt Yp = [p%p"; fl,u) = [f2 (=, w); f2(z,u
I(O):Io, IL‘(T)::ET(?)) :c_[x ,:L‘],p—[p,p], f( : )_[f( i )’f( } )]

where 02 denotes an mrvector. Then, (8) gives
H :pr(a?,u) — fo(z,u). (5)

are Tof"  9f

T b s

dp__oHT__ofT  op” P TP B T w0 ©)
dt ~  9dxr o= P dx (6) 6f“T (7be 3f“T afT
OH ai— —120 12000 = Aep g 10
= 0. (7) : Ou ) ou P ( ou ) Ou A" (
;Y% (8)| * Henceby linear operations, melements of p

Ou  Ou eR", i.e. p?, are computed as a function of u, X,
and pP.
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The new idea, cont’d

/T fo(z, u)dt — min (1) |* Differentiate (10)
da dp® _ 94 9Adu  0Adp" 11
% = =), O el e ACL R Wi il PR (
z(0) = o, z(T) = 27. (3) B 8_/1
H=p"f(z,u) = folw,u0).  (5) Ou
b oHT_ o onT » where B isassumed non-singular. (6) gives
d 9z oz Pt oz (6) T
- dp* _ 9HT _ 9frT . oft ,  0f”
-—=0. () dt = “oze  0z0 P T g P T gga
u & - (12
ar0F | yrOft  0fo _ d _ 9HT _ afT . oft , 0feTe b
P S T 00| W T Ter TTem Pam e BRI
pacfafa | [T are plan ey | o (10) into RHS of (12, 13), noting that dp?/d is given
au| |ou qu ~7 oy by the RHS of (11) and (12), and solving for du/dt,
gives
a T T b
du . 9feT aftT ,  8fe T 9A A dp®. . 5
— = A==t bt L e e i P 14
dat o0 A 5ar P par "o ) g T F@w)
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Theorem

Theorem: If the optimal control problem
(D-(3), m=n, hasthe optimal solution x*, u*
such that u* is smooth and belongsto the
open set U, and if the Hamiltonian is given
by (5), the Jacobians df3/6u and B= dp?/du
are non-singular, then the optimal states x*,
co-states p*°, and control u* satisfy

du oy

E - F(.E,p ,u),

L= S,

dpb b

oy _ 15
ol S(z,p°,u). (15)

with the appropriateinitial conditions
u(0)=uq, pP(0)=p®, to be found.

T
/ Jo(z,u)dt - min (1)
0

de

PrAREACE R )
z(0) = 2o, 2(T) = 7. (3)
o :pr(:z?,u) — fo(z,u). (5)

Remark: if m=n, then x2=x, and
p2=p, and (15) becomes
dx —
gT_ f[x,u]
u—
aT_F[x,u]
Remark: The number of equa-
tionsin (15) is2n, just asin
PMP, but without the maxim-
ization of the Hamiltonian.

(15)
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Example 1: Rigid body rotation

. ) — 212 dps
Stopping axisymmetric rigid body| p = A =[ " E“; i “g; ] % = ap,
. us(ug + uj It
rotation (Athans and Falb, 1963) dp,
— = —a
de ay +u B—(3u%+u% e ) o "
a - W =) (16) TN 2uqug u? 4 3ud
dy
il —ax + us B-1_ 1 ( u% + 3u% —22u1u22 )
2(T)=0,yT)=0  (17) (B[uf +ui]?) " —2wiur  3ui +u2
d = L T(uz + uz)z(ﬁ — min duy
=7/, ) Gt & = aus,
7 T AT T duy S
- - _ofd A b ANy ob — = —au
#=p f(f’u) f°($’u)T' () o2 Tﬂ’wpbé’ﬁx’pb(’ﬂ) dt !
dp _ 0H" _ 9f dfo (6) COX=fixu)
%= " m e pA @™
gu W=Fpxu 1)
du oot apT a6 T oA A dpb. |
=g A P g - S - 5= Pt (14)
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Example 1: Rigid body rotation, cont’d

e _ e Polar coordinates: = (ul, u2) and (X, y) rotate
= Yy + U1, . h

dt (16) _ - collinearly with the same

A TOo= TSR gy angular velocity a.

dt y = rcosf

2(T)=0,yT)=0 (I7) * Let

 then, clearly,

dug  _ o v = ot V2(0)24+9(0)2 = R

dd_t (23) IRV
[u y
d—; = —aus Uy = _C\/W then, from (17), (25), (26),
- dr (25) u1(0)/C = —z(0)/R
. = _ — —C
R x = ¢ u(0)/C = —y(0)/R
ui +uy=0C A a C =R/T
dit
The problem is solved without
maximizing the Hamiltonian!
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Example 2: Optimal spacing for greenhouse lettuce growth
Optimal variable spacing H=(GW)=cr)  (32)« (36),(37) >
policy (Seginer, loslovich, om ; wp 0G aw _ EE(G-wEE)
Gutman), assuming congtant  [aw ~ w2 men t gy G = WG, (38
cli rr]T:)ate ] * pisobtainedfrom . FEreefina time=
% = weW 6H/6\Nfo, H(T)=0 (39
e 2 cndt L =G —wag 3+ Then, att=T, (39,32,34):
0 dp 8 G(W) - cr el
v(T) = vr Gy | @ =~y =T (3) G-I :RI;}VWE) =0 (40
v=aW . (34),(35) > o
with v [kg/plant] = dry mass, dp en S (38, 40) show that V' t,
G [kg/m?/s] net photosynth- * = T (a-wig) (36) W+ satisfies
esis, W [kg/r¥] plant density | . pitferentiating (34), OG(W)IOW =0
(control), a [m?/plant] spacing, o aw enw «  For freefinal time, (38)...
vy marketable plant mass, and = T(G:%G)? (37)  also w/o maximization of
fina time T [4] free. ow the Hamiltonian, 1&G 99
————————————
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Variational, isoparametric problem,
e.g. Gelfand and Fomin. (1969).

4
1
/ z1dt — max (42)
0
dam
— = 43
= = (43)
deg V14 ul (44)

dt
a:](O) = .1!31(1) =0
29(0) =0, 22(1) = 7/3 (45)

Example 3: Maximal area under a curve of given length

H =piu+psV/1+u?+ 2 (46)
.
dt
5 (47)

dt
(48)

W gt =0
F 1T p2 Tt =
Here, it is possible to solve (48) for u, but let us

solve for p; u

p1=—p2 it (49)
Differentiating (49), and using (47) gives

du (14 u?)3/?

dt P2
Guessing p,=constant and u(0), and integrate (43),
(44), (50), such that (45) is satisfied, yields

pr=—1 w0 =13

(50)
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Conclusions

* A method to find the smooth optimal control for a class
of optimal control problems was presented.

» The method does not require the maximization of the
Hamiltonian over the control.

* |Instead, the ODEs for m co-states are substituted for
ODEs for the m smooth control variables.

» Threeillustrative examples were given.
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