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Abstract
When using the Pontryagin Maximum Principle in optimal control 
problems, the most difficult part of the numerical solution is 
associated with the non-linear operation of the maximization of 
the Hamiltonian over the control variables. For a class of 
problems, the optimal control vector is a vector function with 
continuous time derivatives. A method is presented to find this 
smooth control without the maximization of the the Hamiltonian. 
Three illustrative examples are considered.
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The classical optimal control problem
• Consider the classical optimal 

control problem (OCP), 
Pontryagin et al. (1962), Lee 
and Marcus (1967), Athans 
and Falb (1966), etc.

• the control variables u(t)œRm, 
the state variables x(t)œRn, and 
f(x,u)œRn are column vectors, 
with m§n.

• f0(x,u), f(x,u) are smooth
in all arguments.

• The Hamiltonian is

where it holds for the 
column vector p(t)œRn of 
co-state variables, that

according to the Pontryagin 
Maximum Principle (PMP).
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Classical solution
• If an optimal solution (x*,u*) exists, then, by 

PMP, it holds that H(x*, u*, p*)≥ H(x*, u, p*)
implying here by smoothness, and the presence 
of constraint (3) only, that for u= u*,

or, with (5) inserted into (7),

where ∑f0/∑u is 1äm, and ∑f/∑u is näm.
• To find (x*, u*, p*) the two point boundary 

value problem (2)-(6) must be solved.
• At each t, (8) gives u* as a function of x and 

p. (8) is often non-linear, and 
computationally costly.

• p(0) has as many unknowns as given end 
conditions x(T).
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The new idea without optimization w.r.t. u
• We note that (8) is linear in p.
• Assume that rank(∑f/∑u)=m  fl $ a non-

singular mäm submatrix. Then, re-index the 
corresponding vectors

where Ña denotes an m-vector. Then, (8) gives

• Hence by linear operations, m elements of p 
œRn, i.e. pa, are computed as a function of u, x, 
and pb.
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The new idea, cont’d
• Differentiate (10):

• where B is assumed non-singular. (6) gives

• (10) into RHS of (12, 13), noting that dpa/dt is given 
by the RHS of (11) and (12), and solving for du/dt, 
gives
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Theorem

Remark: if m=n, then xa=x, and 
pa=p, and (15) becomes

Theorem: If the optimal control problem 
(1)-(3), m§n, has the optimal solution x*, u*
such that u* is smooth and belongs to the 
open set U, and if the Hamiltonian is given 
by (5), the Jacobians ∑fa/∑u and B= ∑pa/∑u 
are non-singular, then the optimal states x*,  
co-states p*b, and control u* satisfy

with the appropriate initial conditions 
u(0)=u0, p

b(0)=pb
0 to be found.
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Remark: The number of equa-
tions in (15) is 2n, just as in 
PMP, but without the maxim-
ization of the Hamiltonian.
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Example 1: Rigid body rotation
Stopping axisymmetric rigid body 

rotation (Athans and Falb, 1963)
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Example 1: Rigid body rotation, cont’d

The problem is solved without 
maximizing the Hamiltonian!

• (23) fl

• Polar coordinates:

• then, clearly,

fl (u1, u2) and (x, y) rotate 
collinearly with the same 
angular velocity a. 

• Let 

then, from (17), (25), (26),
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Example 2: Optimal spacing for greenhouse lettuce growth
Optimal variable spacing 
policy (Seginer, Ioslovich, 
Gutman), assuming constant 
climate

with v [kg/plant] = dry mass, 
G [kg/m2/s] net photosynth-
esis, W [kg/m2] plant density 
(control), a [m2/plant] spacing, 
vT marketable plant mass, and 
final time T [s] free.

• p is obtained from 

∑H/∑W=0,  

•

• (34), (35) fl

• Differentiating (34), 

• (36), (37) fl

• Free final time fl

• Then, at t=T, (39,32,34):

• (38, 40) show that " t, 
W* satisfies

 ∑G(W*)/∑W* = 0

• For free final time, (38)...  
also w/o maximization of 
the Hamiltonian, I&G 99
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Example 3: Maximal area under a curve of given length

Variational, isoparametric problem,  
e.g. Gelfand and Fomin, (1969).

• Here, it is possible to solve (48) for u, but let us 
solve for p1

• Differentiating (49), and using (47) gives

• Guessing  p2=constant and u(0), and integrate (43), 
(44), (50), such that (45) is satisfied, yields

!
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Conclusions

• A method to find the smooth optimal control for a class 
of optimal control problems was presented.

• The method does not require the maximization of the 
Hamiltonian over the control.

• Instead, the ODEs for m co-states are substituted for 
ODEs for the m smooth control variables.

• Three illustrative examples were given.


