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Answers and solution sketches

1. (a) The linerized dynamics is

ẋ =

[
0 1
0 0

]

x +

[
0
1

]

u

(b) The linearized system is a 2-dimensional Jordan block with eigenvalue at 0. It
is therefore not stable.

(c) We get

x(t + 1) =

[
1 1
0 1

]

x(t) +

[
0.5
1

]

u(t)

(d) The discrete time system is also unstable because F is a 2-dimensional Jordan
block with eigenvale at 1. This is not a surprise because sampling of a divergent
system gives a divergent time series.

(e) We use the procedure in the lecture notes. We have

Γ =

[
0.5 1.5
1 1

]

and tΓ =
[
0 1

]
is solved by t =

[
1 −0.5

]
, which implies that T =

[
1 −0.5
1 0.5

]

.

The transformed system has realization

F̂ = TFT−1 =

[
0 1
−1 2

]

, h = Tb =

[
0
1

]

The state feedback gain g =
[
1 −2

]
gives the desired characteristic polynomial

ϕ(z) = z2 for the transformed system. In the original coordinates we use k =
gT =

[
−1 −1.5

]
.

(f) The state observer has the form

x̂(t + 1) = Fx̂(t) + Gu(t) + L(y(t) − Cx̂(t))

where C =
[
1 0

]
. Design of the observer gain such that the error dynamics

e(t + 1) = (F − LC)e(t) has characteristic polynomial ϕF−LC(z) = (z − 0.5)2

can using the same procedure as in (e). We get L =
[
1 0.25

]T
.

1
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2. (a) We have the factorization
[

1

s + 1

1

s + 2

]

=
1

s2 + 3s + 2

([
2 1

]
+ s

[
1 1

])

which gives the following matrices for the standard reachable realization

A =







0 0 1 0
0 0 0 1
−2 0 −3 0
0 −2 0 −3







, B =







0 0
0 0
1 0
0 1







C =
[
2 1 1 1

]

(b) For problem (b) and (c) we can either compute the McMillan degree as δ(R) =
rank(Hr) and then use Ho’s algorithm or we can show that the standard re-
achable realization is not observable and then use Kalman decomposition to
remove the unobservable states.

Here we take the second approach. The observability matrix is

Ω =







C
CA
CA2

CA3







=







2 1 1 1
−2 −2 −1 −2
2 4 1 4
−2 −8 −1 −8







By using elementary column operations we get the factorization






2 1 1 1
−2 −2 −1 −2
2 4 1 4
−2 −8 −1 −8













1 0 −0.5 0
0 1 0 −1
0 0 1 0
0 0 0 1







=







2 1 0 0
−2 −2 0 0
2 4 0 0
−2 −8 0 0







From this it follows that

KerΩ = span













−0.5
0
1
0







,







0
−1
0
1













so two states can be removed using Kalman decompostion.

(c) R
4 = Ker(Ω) ⊕ Vo, where

Vo = span













1
0
0
0







,







0
1
0
0













By making the change of coordinates

x =







−0.5 0 1 0
0 −1 0 1
1 0 0 0
0 1 0 0







︸ ︷︷ ︸

T

[
zō

zo

]
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we get the realization

Ã = T−1AT =







0 0 1 0
0 0 0 1
1 0 0.5 0
0 1 0 1













0 0 1 0
0 0 0 1
−2 0 −3 0
0 −2 0 −3













−0.5 0 1 0
0 −1 0 1
1 0 0 0
0 1 0 0







=







−2 0 −2 0
0 −1 0 −2
0 0 −1 0
0 0 0 −2







B̃ = T−1B =







1 0
0 1

0.5 0
0 1







C̃ = CT =
[
0 0 2 1

]

From this we immediately get the following minimal realization by removing
the unobservable states

żo =

[
−1 0
0 −2

]

zo +

[
0.5 0
0 1

]

u

y =
[
2 1

]
zo

3. (a) Let the initial state be x0 =
[
0 1

]T
. Then the solution to the system equation

on the time interval [0, T/2) is

x(t) =

[

t +
∫ t

0
u(τ)dτ
1

]

, t ∈ [0, T/2),

which can never become 0.

(b) The reachability Gramian is t ∈ (T/2, T )

W (0, t) =

∫
0.5T

0

[
1 0
0 0

]

dτ +

∫ t

0.5T

[
0 0
0 1

]

dτ =

[
0.5T 0

0 t − 0.5T

]

which is invertible when t > T/2. Hence, any initial condition can be steered
to zero according to Theorem 3.1.4 in Lindquist and Sand.

4. (a) The Riccati equation becomes

ṗ = e−2tp2, p(1) = 1.

By separation of variables we get (c is an arbitrary constant)

dp

p2
= e−2tdt ⇔ −

1

p
= −

1

2
e−2t − c ⇔ p(t) =

1

c + 0.5e−2t
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The boundary condition p(1) = 1 is satisfied if c = 1−0.5e−2, hence the optimal
control is

u(t) = −e−tp(t)x(t) = −
e−t

1 + 0.5(e−2t − e−2)
x(t)

(b) This problem can be solved using the reachability theory. The optimal control
problem can be formulated as

min ‖u‖2 subj. to Lu = d where

{

d = −1

Lu =
∫

1

0
e−τu(τ)dτ

The solution is (it is easy to show that (L∗x)(t) = e−tx for any real number x)

u(t) = L∗(LL∗)−1d = −
2e−t

1 − e−2
, t ∈ [0, 1]

5. (a) As in Lindquist and Sand, we embed the problem in the Kalman filter set-up
using the dynamical system

x(t + 1) = x(t), Ex(t) = 0, Ex(0)2 = p0

y(t) = Cx(t) + w(t), C = 1

where p0 models our uncertainty in the knowledge of d. The best linear least
squares estimator is given by the Kalman filter

x̂(t + 1) = x̂(t) + k(t)(y(t) − Cx̂(t)), x̂(0) = 0

where

k(t) = p(t)1T (p(t)11
T + I)−1

p(t + 1) = p(t) − p(t)21T (p(t)11
T + I)−1

1, p(0) = p0

(b) By using the Sherman-Morrison formula in the hint we get

p(t + 1) = (p(t)−1 + 1
T
1)−1 = (p(t)−1 + N)−1

which implies

p(t + 1) =
p(t)

1 + Np(t)
=

p0

1 + (t + 1)Np0

where the second expression can be proven using induction. This shows that
the variance decreases faster the more sensors we have available.

Similarly the Kalman gain can be simplified to

k(t) =
p(t)

1 + Np(t)
1

T =
p0

1 + (t + 1)Np0

1
T
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(c) At each node we can model the sensor information as the following system

xi(t + 1) = xi(t), Exi(t) = 0, Exi(0)
2 = p0

zi(t) = Cixi(t) + Diwi(t),

where wi(t) is a noise with Ewi = 0, Ewi(t)wi(t)
T = Iiδt,s, where Ii is an

identity matrix of size ni, where ni is the number of elements in Ni. Moreover,

Ci =
∑

j∈Ni

ci,j

Di =
[
ci,j1 . . . ci,jni

]

where j1, . . . , jni
are the indices in Ni. The Kalman filter becomes (using the

same calculations as in (a) and (b))

x̂i(t + 1) = x̂i(t) + ki(zi(t) − Cix̂i(t))

where

ki(t) = pi(t)Ci(piC
2

i + DiD
T
i )−1

pi(t + 1) = pi(t) − pi(t)
2Ci(C

2

i pi(t) + DiD
T
i )−1


