
Mathematical Systems Theory: Advanced Course

Exercise Session 5

1 Accessibility of a nonlinear system

Consider an affine nonlinear control system:

ẋ = f(x) + G(x)u, x(0) = x0, G(x) =
[

g1(x) · · · gm(x)
]
,

where x ∈ N ⊂ Rn, N is an open set and u ∈ Rm. We will discuss the ac-
cessibility of this system, which is a weaker concept than the controllability.

Definition

The system is called locally strongly accessible from x0 if for any initial point
in the neighborhood of x0, the set of reachable points with appropriate u
contains a non-empty open set for any sufficiently small final time T .

Proposition

If dimRc(x0) = n, then the system is locally strongly accessible from x0,
where Rc(x) is the strong accessibility distribution (see page 66 in the lecture
note).

Procedure to compute Rc(x)

Step 1. Take
R0(x) = span {g1(x), · · · , gm(x)} .

Set k = 0.

Step 2. Compute Lie brackets

[f, d] , [gi, d] , ∀d(x) ∈ Rk(x),

and take

Rk+1(x) = Rk(x) + span {Lie brackets which are not in Rk(x)} .

Step 3. Stop and set Rc(x) = Rk+1(x) if Rk+1(x) = Rk(x), or dimRk+1(x) =
n,∀x ∈ N . Otherwise, return to Step 2 with k = k + 1.

Note: There is no guarantee that the process will end up.
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Example

Consider the angular motion of a spacecraft. Here we assume there are
only two controls (two pairs of boosters) available. The model for angular
velocities around the three principal axes is as follows:

ẋ1 =
a2 − a3

a1
x2x3

ẋ2 =
a3 − a1

a2
x1x3 + u1

ẋ3 =
a1 − a2

a3
x2x1 + u2

a1 > 0, a2 > 0, a3 > 0.

Let us compute the strong accessibility distribution Rc(x) and check the
accessibility of the system. In this case,

f(x) :=

⎡
⎢⎣ αx2x3

βx3x1

γx1x2

⎤
⎥⎦ , g1(x) :=

⎡
⎢⎣ 0

1
0

⎤
⎥⎦ , g2(x) :=

⎡
⎢⎣ 0

0
1

⎤
⎥⎦ .

where α := (a2 − a3)/a1, β = (a3 − a1)/a2 and γ = (a1 − a2)/a3.

Step 1. R0(x) = span {g1(x), g2(x)} = span {e2, e3}.
Step 2. Lie brackets are computed as follows:

[f, g1] =
∂e2

∂x
f(x) − ∂f

∂x
e2 = −

⎡
⎢⎣ αx3

0
γx1

⎤
⎥⎦ =: g3(x)

[f, g2] =
∂e3

∂x
f(x) − ∂f

∂x
e3 = −

⎡
⎢⎣ αx2

βx1

0

⎤
⎥⎦ =: g4(x)

[g1, g2] =

⎡
⎢⎣ 0

0
0

⎤
⎥⎦ .

Thus,
R1(x) = span {gi(x), i = 1, . . . , 4} .

Step 3. If α = 0 (i.e. a2 = a3), then R1(x) = R0(x). So, Rc(x) = R0(x) =
span {e2, e3}. If α �= 0, then R1(x) �= R0(x) and dimR1(x) = 2 < 3
for x2 = x3 = 0. Hence, go back to Step 2.
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Step 2-2.

R2(x) = R1(x) + span {[f, gi] , [gi, gj ] , i, j = 1, 2, 3, 4}

Since

[g1, g4] =
∂g4

∂x
e2 − ∂e2

∂x
g4(x) =

⎡
⎢⎣ −α

0
0

⎤
⎥⎦ , (α �= 0)

R2(x) = R3 (whole space).

Step 3-2 Since dimR2(x) = 3 for any x, Rc(x) = R3.

Therefore, if a2 �= a3, then the system is locally strongly accessible from
any point in R3.

2 Stability for linear systems

We will discuss the stability of the linear system

ẋ(t) = Ax(t).

2.1 Asymptotic stability

The matrix A is stable (i.e., all the eigenvalues of A have negative real parts)
if and only if for any N < 0, there exists a unique solution P > 0 for the
Lyapunov equation

AT P + PA = N.

In this case, if we define the Lyapunov function

V (x) := xT Px,

with the solution P , then

V̇ (x(t)) = ẋT (t)Px(t) + xT (t)Pẋ(t) = xT (t)(AT P + PA)x(t) < 0

for x(t) �= 0.
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Example

Check if the matrix A =

[
0 1
−2 −3

]
is stable, without computing the

eigenvalues.
Set N = −I2 and solve the Lyapunov equation (you can use lyap.m):[

0 −2
1 −3

]
︸ ︷︷ ︸

AT

[
p1 p2

p2 p3

]
︸ ︷︷ ︸

P

+

[
p1 p2

p2 p3

]
︸ ︷︷ ︸

P

[
0 1
−2 −3

]
︸ ︷︷ ︸

A

= −
[

1 0
0 1

]
︸ ︷︷ ︸

N

⇔ P =
1
4

[
5 1
1 1

]
.

The matrix P is positive definite, and therefore, A is stable.

2.2 Critical stability

Suppose that the matrix A does not have eigenvalues with positive real part
and has some eigenvalues on the imaginary axis. Such a case is called a
critical case. In critical cases, the system is stable if and only if algebraic
multiplicities of the eigenvalues on the imaginary axis equal geometric mul-
tiplicities.

Example

First, consider the system

ẋ =

[
0 1
0 0

]
︸ ︷︷ ︸

A

x,

where A has two eigenvalues at the origin (algebraic multiplicity is two).

For the two eigenvalues, there is only one eigenvector
[

1 0
]T

(geometric
multiplicity is one). Hence, the system is unstable. Indeed,{

ẋ1 = x2

ẋ2 = 0
=⇒

{
x1(t) = x20t + x10

x2(t) = x20

and x2(t) diverges if x20 �= 0.
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Next, consider the system

ẋ =

[
0 1
−1 0

]
︸ ︷︷ ︸

A

x,

where A has eigenvalues at ±i, with algebraic multiplicity one. Since each
eigenvalue corresponds to one eigenvector, algebraic and geometric multi-
plicities are the same for each eigenvalue. Hence, this system is stable.
Indeed, {

ẋ1 = x2

ẋ2 = −x1
=⇒

{
x1(t) = r sin(t + φ)
x2(t) = r cos(t + φ)

and the trajectory {(x1(t), x2(t))}t forms a circle with radius r.

3 Stability for nonlinear systems

3.1 Principle of stability in the first approximation

Consider a nonlinear system

ẋ = Ax + g(x),

where g(x) indicates higher order terms than order one (i.e., g may include
x2

1, x1x2, x2
2 etc.). Denote the set of all the eigenvalues of A by σ(A). Then,

x = 0 is

• exponentially stable if σ(A) ⊂ C−. (C− is the open left half-plane.)

• unstable if σ(A) ∩ C+ �= ∅. (C+ is the open right half-plane.)

If A has no eigenvalue in the open right half-plane but has at least one
eigenvalue on the imaginary axis, then we need nonlinear stability theory,
such as center manifold theory, to determine the stability of x = 0.

Next, consider a nonlinear system with a control

ẋ = Ax + g(x) + Bu,

where g is the same as above. If (A,B) is stabilizable, then x = 0 of
the nonlinear system can be exponentially stable by using a state feedback
u = Fx, where F is chosen so that A + BF is stable.
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Example

Consider a nonlinear system

ẋ =

[
0 1
α β

]
︸ ︷︷ ︸

A

x + g(x),

where g is a higher order term than order one.

If α = −1 and β = −2: A has two eigenvalues at −1, and hence x = 0 is
exponentially stable. (In fact, if α and β are negative, then A is a
stable matrix and x = 0 is exponentially stable.)

If α = 0 and β = 1: A has 1 eigenvalue at 1, and hence x = 0 is unstable.

If α = β = 0: Since A has eigenvalues only on the imaginary axis, we cannot
determine the stability of x = 0 by “Principle of stability in the first
approximation”.

3.2 Stability for a special but important nonlinear system

Consider a scalar nonlinear system

ẋ = axn, x(0) = x0,

where a is a real constant and n is a positive integer. Study the stability of
this system.

We consider several cases.

If n = 1: The system is linear.

x(t) = eatx0.

If a < 0: Since x(t) → 0 as t → ∞, x = 0 is asymptotically stable.
If a = 0: Since x(t) = x0 for all t, x = 0 is (critically) stable.
If a > 0: Since |x(t)| → ∞ as t → ∞, x = 0 is unstable.

If n > 1: We solve the differential equation.

ẋ = axn ⇒
∫

x−ndx =
∫

adt

⇒ 1
1 − n

x1−n = at +
1

1 − n
x1−n

0 , (since x(0) = x0)

⇒ x(t)n−1 =
1

(1 − n)at + x1−n
0

6



If a = 0: Since x(t) = x0 for all t, x = 0 is critically stable.

If a �= 0: Since
∣∣∣(1 − n)at + x1−n

0

∣∣∣ → ∞ as t → ∞, |x(t)| → 0 as t →
∞. But the question is if |x(t)| → ∞ at some time t0 ∈ (0,∞)
for some x0.
By setting the denominator of x(t)n−1 equal zero,

t0 :=
x1−n

0

a(n − 1)
=

1
axn−1

0 (n − 1)
.

If a < 0 and n is odd: Since xn−1
0 > 0 for all nonzero x0, t0 < 0

and hence |x(t)| �= ∞ and x = 0 is asymptotically stable.
Otherwise: We can always choose x0 such that

t0 =
1

axn−1
0 (n − 1)

> 0.

Thus, x = 0 is unstable.

In summary, x = 0 is

• asymptotically stable if a < 0 and n is odd,

• critically stable if a = 0,

• unstable otherwise.

Fact

The stability of the system

ẋ = axn + O(|x|n+1)

is the same as the stability of ẋ = axn. (This fact will be useful when you
learn center manifold theory.)
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