Mathematical Systems Theory: Advanced Course Exercise Session 5

1 Accessibility of a nonlinear system

Consider an affine nonlinear control system:

$$
\dot{x}=f(x)+G(x) u, x(0)=x_{0}, \quad G(x)=\left[\begin{array}{lll}
g_{1}(x) & \cdots & g_{m}(x)
\end{array}\right]
$$

where $x \in N \subset R^{n}, N$ is an open set and $u \in R^{m}$. We will discuss the accessibility of this system, which is a weaker concept than the controllability.

Definition

The system is called locally strongly accessible from x_{0} if for any initial point in the neighborhood of x_{0}, the set of reachable points with appropriate u contains a non-empty open set for any sufficiently small final time T.

Proposition

If $\operatorname{dim} \mathcal{R}_{c}\left(x_{0}\right)=n$, then the system is locally strongly accessible from x_{0}, where $R_{c}(x)$ is the strong accessibility distribution (see page 66 in the lecture note).

Procedure to compute $\mathcal{R}_{c}(x)$

Step 1. Take

$$
\mathcal{R}_{0}(x)=\operatorname{span}\left\{g_{1}(x), \cdots, g_{m}(x)\right\}
$$

Set $k=0$.
Step 2. Compute Lie brackets

$$
[f, d],\left[g_{i}, d\right], \forall d(x) \in \mathcal{R}_{k}(x)
$$

and take

$$
\mathcal{R}_{k+1}(x)=\mathcal{R}_{k}(x)+\operatorname{span}\left\{\text { Lie brackets which are not in } \mathcal{R}_{k}(x)\right\}
$$

Step 3. Stop and set $\mathcal{R}_{c}(x)=\mathcal{R}_{k+1}(x)$ if $\mathcal{R}_{k+1}(x)=\mathcal{R}_{k}(x)$, or $\operatorname{dim} \mathcal{R}_{k+1}(x)=$ $n, \forall x \in N$. Otherwise, return to Step 2 with $k=k+1$.
Note: There is no guarantee that the process will end up.

Example

Consider the angular motion of a spacecraft. Here we assume there are only two controls (two pairs of boosters) available. The model for angular velocities around the three principal axes is as follows:

$$
\begin{aligned}
\dot{x}_{1}= & \frac{a_{2}-a_{3}}{a_{1}} x_{2} x_{3} \\
\dot{x}_{2}= & \frac{a_{3}-a_{1}}{a_{2}} x_{1} x_{3}+u_{1} \\
\dot{x}_{3}= & \frac{a_{1}-a_{2}}{a_{3}} x_{2} x_{1}+u_{2} \\
& a_{1}>0, a_{2}>0, a_{3}>0 .
\end{aligned}
$$

Let us compute the strong accessibility distribution $R_{c}(x)$ and check the accessibility of the system. In this case,

$$
f(x):=\left[\begin{array}{l}
\alpha x_{2} x_{3} \\
\beta x_{3} x_{1} \\
\gamma x_{1} x_{2}
\end{array}\right], g_{1}(x):=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], g_{2}(x):=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

where $\alpha:=\left(a_{2}-a_{3}\right) / a_{1}, \beta=\left(a_{3}-a_{1}\right) / a_{2}$ and $\gamma=\left(a_{1}-a_{2}\right) / a_{3}$.
Step 1. $\mathcal{R}_{0}(x)=\operatorname{span}\left\{g_{1}(x), g_{2}(x)\right\}=\operatorname{span}\left\{e_{2}, e_{3}\right\}$.
Step 2. Lie brackets are computed as follows:

$$
\begin{aligned}
& {\left[f, g_{1}\right]=\frac{\partial e_{2}}{\partial x} f(x)-\frac{\partial f}{\partial x} e_{2}=-\left[\begin{array}{c}
\alpha x_{3} \\
0 \\
\gamma x_{1}
\end{array}\right]=: g_{3}(x)} \\
& {\left[f, g_{2}\right]=\frac{\partial e_{3}}{\partial x} f(x)-\frac{\partial f}{\partial x} e_{3}=-\left[\begin{array}{c}
\alpha x_{2} \\
\beta x_{1} \\
0
\end{array}\right]=: g_{4}(x)} \\
& {\left[g_{1}, g_{2}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .}
\end{aligned}
$$

Thus,

$$
\mathcal{R}_{1}(x)=\operatorname{span}\left\{g_{i}(x), i=1, \ldots, 4\right\} .
$$

Step 3. If $\alpha=0$ (i.e. $a_{2}=a_{3}$), then $\mathcal{R}_{1}(x)=\mathcal{R}_{0}(x)$. So, $\mathcal{R}_{c}(x)=\mathcal{R}_{0}(x)=$ $\operatorname{span}\left\{e_{2}, e_{3}\right\}$. If $\alpha \neq 0$, then $\mathcal{R}_{1}(x) \neq \mathcal{R}_{0}(x)$ and $\operatorname{dim} \mathcal{R}_{1}(x)=2<3$ for $x_{2}=x_{3}=0$. Hence, go back to Step 2 .

Step 2-2.

$$
\mathcal{R}_{2}(x)=\mathcal{R}_{1}(x)+\operatorname{span}\left\{\left[f, g_{i}\right],\left[g_{i}, g_{j}\right], i, j=1,2,3,4\right\}
$$

Since

$$
\left[g_{1}, g_{4}\right]=\frac{\partial g_{4}}{\partial x} e_{2}-\frac{\partial e_{2}}{\partial x} g_{4}(x)=\left[\begin{array}{c}
-\alpha \\
0 \\
0
\end{array}\right],(\alpha \neq 0)
$$

$\mathcal{R}_{2}(x)=R^{3}$ (whole space).
Step 3-2 Since $\operatorname{dim} \mathcal{R}_{2}(x)=3$ for any $x, R_{c}(x)=R^{3}$.
Therefore, if $a_{2} \neq a_{3}$, then the system is locally strongly accessible from any point in R^{3}.

2 Stability for linear systems

We will discuss the stability of the linear system

$$
\dot{x}(t)=A x(t) .
$$

2.1 Asymptotic stability

The matrix A is stable (i.e., all the eigenvalues of A have negative real parts) if and only if for any $N<0$, there exists a unique solution $P>0$ for the Lyapunov equation

$$
A^{T} P+P A=N .
$$

In this case, if we define the Lyapunov function

$$
V(x):=x^{T} P x,
$$

with the solution P, then

$$
\dot{V}(x(t))=\dot{x}^{T}(t) P x(t)+x^{T}(t) P \dot{x}(t)=x^{T}(t)\left(A^{T} P+P A\right) x(t)<0
$$

for $x(t) \neq 0$.

Example

Check if the matrix $A=\left[\begin{array}{cc}0 & 1 \\ -2 & -3\end{array}\right]$ is stable, without computing the eigenvalues.

Set $N=-I_{2}$ and solve the Lyapunov equation (you can use lyap.m):

$$
\begin{aligned}
& \underbrace{\left[\begin{array}{ll}
0 & -2 \\
1 & -3
\end{array}\right]}_{A^{T}} \underbrace{\left[\begin{array}{ll}
p_{1} & p_{2} \\
p_{2} & p_{3}
\end{array}\right]}_{P}+\underbrace{\left[\begin{array}{ll}
p_{1} & p_{2} \\
p_{2} & p_{3}
\end{array}\right]}_{P} \underbrace{\left[\begin{array}{cc}
0 & 1 \\
-2 & -3
\end{array}\right]}_{A}=-\underbrace{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]}_{N} \\
& \Leftrightarrow P=\frac{1}{4}\left[\begin{array}{ll}
5 & 1 \\
1 & 1
\end{array}\right] .
\end{aligned}
$$

The matrix P is positive definite, and therefore, A is stable.

2.2 Critical stability

Suppose that the matrix A does not have eigenvalues with positive real part and has some eigenvalues on the imaginary axis. Such a case is called a critical case. In critical cases, the system is stable if and only if algebraic multiplicities of the eigenvalues on the imaginary axis equal geometric multiplicities.

Example

First, consider the system

$$
\dot{x}=\underbrace{\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]}_{A} x,
$$

where A has two eigenvalues at the origin (algebraic multiplicity is two). For the two eigenvalues, there is only one eigenvector $\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}$ (geometric multiplicity is one). Hence, the system is unstable. Indeed,

$$
\left\{\begin{array} { l }
{ \dot { x } _ { 1 } = x _ { 2 } } \\
{ \dot { x } _ { 2 } = 0 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
x_{1}(t)=x_{20} t+x_{10} \\
x_{2}(t)=x_{20}
\end{array}\right.\right.
$$

and $x_{2}(t)$ diverges if $x_{20} \neq 0$.

Next, consider the system

$$
\dot{x}=\underbrace{\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]}_{A} x
$$

where A has eigenvalues at $\pm i$, with algebraic multiplicity one. Since each eigenvalue corresponds to one eigenvector, algebraic and geometric multiplicities are the same for each eigenvalue. Hence, this system is stable. Indeed,

$$
\left\{\begin{array} { l }
{ \dot { x } _ { 1 } = x _ { 2 } } \\
{ \dot { x } _ { 2 } = - x _ { 1 } }
\end{array} \Longrightarrow \left\{\begin{array}{l}
x_{1}(t)=r \sin (t+\phi) \\
x_{2}(t)=r \cos (t+\phi)
\end{array}\right.\right.
$$

and the trajectory $\left\{\left(x_{1}(t), x_{2}(t)\right)\right\}_{t}$ forms a circle with radius r.

3 Stability for nonlinear systems

3.1 Principle of stability in the first approximation

Consider a nonlinear system

$$
\dot{x}=A x+g(x),
$$

where $g(x)$ indicates higher order terms than order one (i.e., g may include $x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}$ etc.). Denote the set of all the eigenvalues of A by $\sigma(A)$. Then, $x=0$ is

- exponentially stable if $\sigma(A) \subset C^{-}$. (C^{-}is the open left half-plane.)
- unstable if $\sigma(A) \cap C^{+} \neq \emptyset$. (C^{+}is the open right half-plane.)

If A has no eigenvalue in the open right half-plane but has at least one eigenvalue on the imaginary axis, then we need nonlinear stability theory, such as center manifold theory, to determine the stability of $x=0$.

Next, consider a nonlinear system with a control

$$
\dot{x}=A x+g(x)+B u,
$$

where g is the same as above. If (A, B) is stabilizable, then $x=0$ of the nonlinear system can be exponentially stable by using a state feedback $u=F x$, where F is chosen so that $A+B F$ is stable.

Example

Consider a nonlinear system

$$
\dot{x}=\underbrace{\left[\begin{array}{ll}
0 & 1 \\
\alpha & \beta
\end{array}\right]}_{A} x+g(x)
$$

where g is a higher order term than order one.
If $\alpha=-1$ and $\beta=-2: A$ has two eigenvalues at -1 , and hence $x=0$ is exponentially stable. (In fact, if α and β are negative, then A is a stable matrix and $x=0$ is exponentially stable.)
If $\alpha=0$ and $\beta=1$: A has 1 eigenvalue at 1 , and hence $x=0$ is unstable.
If $\alpha=\beta=0$: Since A has eigenvalues only on the imaginary axis, we cannot determine the stability of $x=0$ by "Principle of stability in the first approximation".

3.2 Stability for a special but important nonlinear system

Consider a scalar nonlinear system

$$
\dot{x}=a x^{n}, x(0)=x_{0}
$$

where a is a real constant and n is a positive integer. Study the stability of this system.

We consider several cases.
If $n=1$: The system is linear.

$$
x(t)=e^{a t} x_{0}
$$

If $a<0$: Since $x(t) \rightarrow 0$ as $t \rightarrow \infty, x=0$ is asymptotically stable.
If $a=0$: Since $x(t)=x_{0}$ for all $t, x=0$ is (critically) stable.
If $a>0$: Since $|x(t)| \rightarrow \infty$ as $t \rightarrow \infty, x=0$ is unstable.
If $n>1$: We solve the differential equation.

$$
\begin{aligned}
\dot{x}=a x^{n} & \Rightarrow \int x^{-n} d x=\int a d t \\
& \Rightarrow \frac{1}{1-n} x^{1-n}=a t+\frac{1}{1-n} x_{0}^{1-n}, \quad\left(\text { since } x(0)=x_{0}\right) \\
& \Rightarrow x(t)^{n-1}=\frac{1}{(1-n) a t+x_{0}^{1-n}}
\end{aligned}
$$

If $a=0$: Since $x(t)=x_{0}$ for all $t, x=0$ is critically stable.
If $a \neq 0$: Since $\left|(1-n) a t+x_{0}^{1-n}\right| \rightarrow \infty$ as $t \rightarrow \infty,|x(t)| \rightarrow 0$ as $t \rightarrow$ ∞. But the question is if $|x(t)| \rightarrow \infty$ at some time $t_{0} \in(0, \infty)$ for some x_{0}.
By setting the denominator of $x(t)^{n-1}$ equal zero,

$$
t_{0}:=\frac{x_{0}^{1-n}}{a(n-1)}=\frac{1}{a x_{0}^{n-1}(n-1)} .
$$

If $a<0$ and n is odd: Since $x_{0}^{n-1}>0$ for all nonzero $x_{0}, t_{0}<0$ and hence $|x(t)| \neq \infty$ and $x=0$ is asymptotically stable.
Otherwise: We can always choose x_{0} such that

$$
t_{0}=\frac{1}{a x_{0}^{n-1}(n-1)}>0 .
$$

Thus, $x=0$ is unstable.
In summary, $x=0$ is

- asymptotically stable if $a<0$ and n is odd,
- critically stable if $a=0$,
- unstable otherwise.

Fact

The stability of the system

$$
\dot{x}=a x^{n}+\mathcal{O}\left(|x|^{n+1}\right)
$$

is the same as the stability of $\dot{x}=a x^{n}$. (This fact will be useful when you learn center manifold theory.)

