Mathematical Systems Theory: Advanced Course Exercise Session 6

1 How to check stability in critical cases?

Consider a nonlinear system

$$
\dot{x}=f(x) .
$$

Now suppose that the matrix

$$
L:=\left.\frac{\partial f}{\partial x}\right|_{x=0}
$$

has no eigenvalues in the open right half-plane but has some eigenvalues on the imaginary axis. Such cases are called critical cases. To check the stability in such cases, one can use the center manifold theory.

The procedure to check the stability is as follows.
Step 1. From $\dot{x}=f(x)$, obtain

$$
\begin{equation*}
\dot{x}=L x+p(x), \tag{1}
\end{equation*}
$$

where p includes higher order terms than order one.
Step 2. If necessary, do a coordinate change to transform (1) into

$$
\left[\begin{array}{c}
\dot{z} \\
\dot{y}
\end{array}\right]=\left[\begin{array}{ll}
A & \\
& B
\end{array}\right]\left[\begin{array}{l}
z \\
y
\end{array}\right]+\left[\begin{array}{l}
f(z, y) \\
g(z, y)
\end{array}\right],
$$

where A and B have eigenvalues only on the imaginary axis and only in the open left half-plane, respectively.

Step 3. First, try to solve $\dot{y}=0$, i.e.,

$$
B y+g(z, y)=0,
$$

with respect to y. If it is difficult to solve, we solve instead $B y+$ $g(z, 0)=0$, i.e.,

$$
y=-B^{-1} g(z, 0)
$$

Set $\phi(z):=y$. Using the obtained ϕ, define

$$
M \phi(z):=\frac{\partial \phi}{\partial z}(A z+f(z, \phi(z)))-B \phi(z)-g(z, \phi(z))
$$

Step 4. The center manifold is approximated as

$$
h(z)=\phi(z)+\mathcal{O}(M \phi(z)) .
$$

Step 5. Check the stability of

$$
\dot{w}=A w+f(w, h(w)) .
$$

Example 1

Check the stability of the system

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{1}^{4}+x_{1} x_{2} \\
\dot{x}_{2}=-2 x_{2}-x_{1}^{2}+x_{1} x_{2}^{2}
\end{array}\right.
$$

This system can be written as

$$
\left\{\begin{array}{l}
\dot{x}_{1}=\underbrace{0}_{A} x_{1}+\underbrace{x_{1}^{4}+x_{1} x_{2}}_{f\left(x_{1}, x_{2}\right)} \\
\dot{x}_{2}=\underbrace{-2}_{B} x_{2}+\underbrace{\left(-x_{1}^{2}\right)+x_{1} x_{2}^{2}}_{g\left(x_{1}, x_{2}\right)}
\end{array}\right.
$$

Since it is difficult to solve $-2 x_{2}-x_{1}^{2}+x_{1} x_{2}^{2}=0$ with respect to x_{2}, we set

$$
x_{2}=-B^{-1} g\left(x_{1}, 0\right)=-\frac{1}{2} x_{1}^{2}=: \phi\left(x_{1}\right) .
$$

Hence,

$$
\begin{aligned}
M \phi\left(x_{1}\right) & :=\frac{\partial \phi}{\partial x_{1}}\left(A x_{1}+f\left(x_{1}, \phi\left(x_{1}\right)\right)\right)-B \phi\left(x_{1}\right)-g\left(x_{1}, \phi\left(x_{1}\right)\right) \\
& =-x_{1}\left(x_{1}^{4}-\frac{1}{2} x_{1}^{3}\right)-\frac{1}{4} x_{1}^{5} \\
& =\mathcal{O}\left(x_{1}^{4}\right) .
\end{aligned}
$$

So, the center manifold is approximated as

$$
h\left(x_{1}\right)=-\frac{1}{2} x_{1}^{2}+\mathcal{O}\left(x_{1}^{4}\right) .
$$

Let us check the stability of

$$
\begin{aligned}
& \dot{w}=\underbrace{0}_{A} w+\underbrace{w^{4}+w\left(-\frac{1}{2} w^{2}+\mathcal{O}\left(w^{4}\right)\right)}_{f(w, h(w))} \\
& \Rightarrow \dot{w}=-\frac{1}{2} w^{3}+\mathcal{O}\left(w^{4}\right) .
\end{aligned}
$$

Since $w=0$ is asymptotically stable for this system, $\left(x_{1}, x_{2}\right)=(0,0)$ is also asymptotically stable for the original system.

Example 2

Consider the control system

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2} x_{3} \\
\dot{x}_{2}=u_{1} \\
\dot{x}_{3}=-x_{1} x_{2}+u_{2}
\end{array}\right.
$$

This is the model of spacecraft with some constants (see the note for Exercise Session 5). If we use control

$$
u_{1}=-x_{2}+x_{1}^{2}, \quad u_{2}=-x_{3}-x_{1}^{3}
$$

the closed-loop system becomes

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2} x_{3} \\
\dot{x}_{2}=-x_{2}+x_{1}^{2} \\
\dot{x}_{3}=-x_{1} x_{2}-x_{3}-x_{1}^{3}
\end{array}\right.
$$

We will check the stability of this closed-loop system.
We can write the system as

$$
\left\{\begin{aligned}
\dot{x}_{1} & =A x_{1}+f\left(x_{1},\left[x_{2}, x_{3}\right]\right) \\
{\left[\begin{array}{l}
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right] } & =B\left[\begin{array}{l}
x_{2} \\
x_{3}
\end{array}\right]+g\left(x_{1},\left[x_{2}, x_{3}\right]\right)
\end{aligned}\right.
$$

where

$$
A=0, B=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right], f\left(x_{1},\left[x_{2}, x_{3}\right]\right)=x_{2} x_{3}, g\left(x_{1},\left[x_{2}, x_{3}\right]\right)=\left[\begin{array}{c}
x_{1}^{2} \\
-x_{1} x_{2}-x_{1}^{3}
\end{array}\right]
$$

First, solve

$$
\begin{gathered}
0=-x_{2}+x_{1}^{2} \Rightarrow x_{2}=x_{1}^{2}=: \phi_{1}\left(x_{1}\right) \\
0=-x_{1} x_{2}-x_{3}-x_{1}^{3} \Rightarrow x_{3}=-2 x_{1}^{3}=: \phi_{2}\left(x_{1}\right) \\
\text { Define } \phi\left(x_{1}\right):=\left[\begin{array}{c}
\phi_{1}\left(x_{1}\right) \\
\phi_{2}\left(x_{1}\right)
\end{array}\right] . \text { Then, } \\
M \phi\left(x_{1}\right):=\frac{\partial \phi}{\partial x_{1}}\left(A x_{1}+f\left(x_{1}, \phi\left(x_{1}\right)\right)\right)-B \phi\left(x_{1}\right)-g\left(x_{1}, \phi\left(x_{1}\right)\right) \\
=\left[\begin{array}{c}
2 x_{1} \\
-6 x_{1}^{2}
\end{array}\right] x_{1}^{2}\left(-2 x_{1}^{3}\right)=\left[\begin{array}{c}
\mathcal{O}\left(x_{1}^{6}\right) \\
\mathcal{O}\left(x_{1}^{7}\right)
\end{array}\right]
\end{gathered}
$$

So, the center manifold is approximated as

$$
h\left(x_{1}\right)=\left[\begin{array}{c}
x_{1}^{2} \\
-2 x_{1}^{3}
\end{array}\right]+\left[\begin{array}{c}
\mathcal{O}\left(x_{1}^{6}\right) \\
\mathcal{O}\left(x_{1}^{7}\right)
\end{array}\right] .
$$

Let us check the stability of the system

$$
\begin{aligned}
& \dot{w}=\left(w^{2}+\mathcal{O}\left(w^{6}\right)\right)\left(-2 w^{3}+\mathcal{O}\left(w^{7}\right)\right) \\
& \Rightarrow \dot{w}=-2 w^{5}+\mathcal{O}\left(w^{9}\right) .
\end{aligned}
$$

$w=0$ of this system is asymptotically stable, and so is $x=0$ of the original system.

2 Normal form in SISO nonlinear systems

Consider a SISO nonlinear system

$$
\left\{\begin{array}{l}
\dot{x}=f(x)+g(x) u \\
y=h(x) .
\end{array}\right.
$$

The system has relative degree at a point x_{0} if

$$
\begin{aligned}
& L_{g} L_{f}^{k} h(x)=0, \forall x \in \mathcal{N}\left(x_{0}\right), k=0,1, \ldots, r-2, \\
& L_{g} L_{f}^{r-1} h\left(x_{0}\right) \neq 0 .
\end{aligned}
$$

If the system has relative degree at x_{0}, then in $\mathcal{N}\left(x_{0}\right)$, we can transform the system into a normal form:

$$
\left\{\begin{aligned}
\dot{z} & =f_{0}(z, \xi) \\
\dot{\xi}_{1} & =\xi_{2} \\
& \vdots \\
\dot{\xi}_{r-1} & =\xi_{r} \\
\dot{\xi}_{r} & =f_{1}(z, \xi)+g_{1}(z, \xi) u
\end{aligned}\right.
$$

The zero dynamics is

$$
\dot{z}=f_{0}(z, 0)
$$

To obtain a normal form, we take new states as

$$
\xi_{1}:=h(x), \xi_{2}:=L_{f} h(x), \cdots, \xi_{r}:=L_{f}^{r-1} h(x) .
$$

As for the z part, first define

$$
\mathcal{D}:=\operatorname{span}\{g\} .
$$

Then, compute

$$
\mathcal{D}^{\perp}:=\left\{w_{i}(x): i=1, \ldots, n-1, w_{i}(x) g=0\right\} .
$$

For each row vector $w_{i}(x)=:\left[\begin{array}{lll}w_{1}^{i}(x) & \cdots & w_{n}^{i}(x)\end{array}\right]$, if the following holds:

$$
\frac{\partial w_{j}^{i}}{\partial x_{k}}=\frac{\partial w_{k}^{i}}{\partial x_{j}}, \forall j, k,
$$

then you can find z_{i} satisfying

$$
d z_{i}=w_{i}
$$

Choose such z_{i} that are linearly independent of ξ part that has already been chosen.

Otherwise, you have to change the basis of \mathcal{D}^{\perp}. (But how to find such basis is not required in this course.)

Example

Consider the system

$$
\left\{\begin{aligned}
\dot{x}_{1} & =x_{2} \\
\dot{x}_{2} & =\sin x_{1}+u \\
\dot{x}_{3} & =x_{4} \\
\dot{x}_{4} & =\sin 2 x_{1}+\left(\cos x_{1}\right) u \\
y & =x_{1},
\end{aligned}\right.
$$

or equivalently,

$$
\left\{\begin{array}{l}
\dot{x}=\underbrace{\left[\begin{array}{c}
x_{2} \\
\sin x_{1} \\
x_{4} \\
\sin 2 x_{1}
\end{array}\right]}_{f(x)}+\underbrace{\left[\begin{array}{c}
0 \\
1 \\
0 \\
\cos x_{1}
\end{array}\right]}_{g(x)} u \\
y=\underbrace{x_{1}}_{h(x)}
\end{array}\right.
$$

First, let us check if the system has relative degree at $x=0$.

$$
\begin{aligned}
L_{g} h(x) & =\frac{\partial h}{\partial x} g=\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right] g=0 \\
L_{g} L_{f} h(x) & =L_{g}\left(\frac{\partial h}{\partial x} f\right)=L_{g}\left(x_{2}\right)=\frac{\partial x_{2}}{\partial x} g=1 \neq 0 .
\end{aligned}
$$

Hence, relative degree is two.
Next, we transform the system into a normal form. We take new states as

$$
\xi_{1}:=h(x)=x_{1}, \xi_{2}:=L_{f} h(x)=x_{2} .
$$

We have to take another two states z_{1} and z_{2} (z part). To this end, we first find

$$
\mathcal{D}^{\perp}:=(\operatorname{span}\{g\})^{\perp}=\operatorname{span}\left\{e_{1}^{T}, e_{3}^{T},\left[\begin{array}{llll}
* & \cos x_{1} & * & -1
\end{array}\right]\right\} .
$$

We obtain one state z_{1} from the following observation:

$$
\begin{aligned}
& d z=e_{1}^{T} \Rightarrow z_{1}=x_{1} \text { (already chosen as } \xi_{1} . \text { Ignore!) } \\
& d z=e_{3}^{T} \Rightarrow z_{1}=x_{3} .
\end{aligned}
$$

To ensure the existence of z_{2} with $d z_{2}=\left[\begin{array}{llll}* & \cos x_{1} & * & -1\end{array}\right]$, we verify

$$
\frac{\partial \cos x_{1}}{\partial x_{4}}=\frac{\partial(-1)}{\partial x_{2}}(=0)
$$

So we can solve

$$
d z_{2}=\left[\begin{array}{llll}
* & \cos x_{1} & * & -1
\end{array}\right] .
$$

or equivalently,

$$
\left\{\begin{array}{l}
\frac{\partial z_{2}}{\partial x_{2}}=\cos x_{1} \\
\frac{\partial z_{2}}{\partial x_{4}}=-1
\end{array}\right.
$$

One solution is

$$
z_{2}=\left(\cos x_{1}\right) x_{2}-x_{4}
$$

Since $\xi_{1}:=x_{1}, \xi_{2}:=x_{2}$ and $z_{1}:=x_{3}$ do not include x_{4}, this z_{2} satisfies the second condition above.

Therefore,

$$
\begin{aligned}
\dot{z}_{1} & =\dot{x}_{3}=x_{4}=\left(\cos x_{1}\right) x_{2}-z_{2}=\left(\cos \xi_{1}\right) \xi_{2}-z_{2} \\
\dot{z}_{2} & =\left(-\sin x_{1}\right) \dot{x}_{1} x_{2}+\left(\cos x_{1}\right) \dot{x}_{2}-\dot{x}_{4} \\
& =-\left(\sin x_{1}\right) x_{2}^{2}+\left(\cos x_{1}\right)\left(\sin x_{1}+u\right)-\left(\sin 2 x_{1}+\left(\cos x_{1}\right) u\right) \\
& =-\left(\sin \xi_{1}\right) \xi_{2}^{2}-\frac{1}{2} \sin 2 \xi_{1} \\
\dot{\xi}_{1} & =\dot{x}_{1}=x_{2}=\xi_{2} \\
\dot{\xi}_{2} & =\dot{x}_{2}=\sin x_{1}+u=\sin \xi_{1}+u \\
y & =\xi_{1} .
\end{aligned}
$$

The zero dynamics is obtained by setting $\xi=0$:

$$
\begin{aligned}
& \dot{z}_{1}=-z_{2} \\
& \dot{z}_{2}=0 .
\end{aligned}
$$

