
Mathematical Systems Theory: Advanced Course

Exercise Session 6

1 How to check stability in critical cases?

Consider a nonlinear system

ẋ = f(x).

Now suppose that the matrix

L :=
∂f

∂x

∣∣∣∣
x=0

has no eigenvalues in the open right half-plane but has some eigenvalues
on the imaginary axis. Such cases are called critical cases. To check the
stability in such cases, one can use the center manifold theory.

The procedure to check the stability is as follows.

Step 1. From ẋ = f(x), obtain

ẋ = Lx + p(x), (1)

where p includes higher order terms than order one.

Step 2. If necessary, do a coordinate change to transform (1) into[
ż
ẏ

]
=

[
A

B

] [
z
y

]
+

[
f(z, y)
g(z, y)

]
,

where A and B have eigenvalues only on the imaginary axis and only
in the open left half-plane, respectively.

Step 3. First, try to solve ẏ = 0, i.e.,

By + g(z, y) = 0,

with respect to y. If it is difficult to solve, we solve instead By +
g(z, 0) = 0, i.e.,

y = −B−1g(z, 0).

Set φ(z) := y. Using the obtained φ, define

Mφ(z) :=
∂φ

∂z
(Az + f(z, φ(z))) − Bφ(z) − g(z, φ(z))
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Step 4. The center manifold is approximated as

h(z) = φ(z) + O(Mφ(z)).

Step 5. Check the stability of

ẇ = Aw + f(w, h(w)).

Example 1

Check the stability of the system{
ẋ1 = x4

1 + x1x2

ẋ2 = −2x2 − x2
1 + x1x

2
2

This system can be written as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1 = 0︸︷︷︸
A

x1 + x4
1 + x1x2︸ ︷︷ ︸
f(x1,x2)

ẋ2 = −2︸︷︷︸
B

x2 + (−x2
1) + x1x

2
2︸ ︷︷ ︸

g(x1,x2)

.

Since it is difficult to solve −2x2 − x2
1 + x1x

2
2 = 0 with respect to x2, we set

x2 = −B−1g(x1, 0) = −1
2
x2

1 =: φ(x1).

Hence,

Mφ(x1) :=
∂φ

∂x1
(Ax1 + f(x1, φ(x1))) − Bφ(x1) − g(x1, φ(x1))

= −x1

(
x4

1 −
1
2
x3

1

)
− 1

4
x5

1

= O(x4
1).

So, the center manifold is approximated as

h(x1) = −1
2
x2

1 + O(x4
1).

Let us check the stability of

ẇ = 0︸︷︷︸
A

w + w4 + w

(
−1

2
w2 + O(w4)

)
︸ ︷︷ ︸

f(w,h(w))

⇒ ẇ = −1
2
w3 + O(w4).

Since w = 0 is asymptotically stable for this system, (x1, x2) = (0, 0) is also
asymptotically stable for the original system.
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Example 2

Consider the control system⎧⎪⎨
⎪⎩

ẋ1 = x2x3

ẋ2 = u1

ẋ3 = −x1x2 + u2.

This is the model of spacecraft with some constants (see the note for Exercise
Session 5). If we use control

u1 = −x2 + x2
1, u2 = −x3 − x3

1,

the closed-loop system becomes⎧⎪⎨
⎪⎩

ẋ1 = x2x3

ẋ2 = −x2 + x2
1

ẋ3 = −x1x2 − x3 − x3
1.

We will check the stability of this closed-loop system.
We can write the system as⎧⎪⎨

⎪⎩
ẋ1 = Ax1 + f(x1, [x2, x3])[
ẋ2

ẋ3

]
= B

[
x2

x3

]
+ g(x1, [x2, x3])

where

A = 0, B =

[
−1 0
0 −1

]
, f(x1, [x2, x3]) = x2x3, g(x1, [x2, x3]) =

[
x2

1

−x1x2 − x3
1

]
.

First, solve
0 = −x2 + x2

1 ⇒ x2 = x2
1 =: φ1(x1)

0 = −x1x2 − x3 − x3
1 ⇒ x3 = −2x3

1 =: φ2(x1)

Define φ(x1) :=

[
φ1(x1)
φ2(x1)

]
. Then,

Mφ(x1) :=
∂φ

∂x1
(Ax1 + f(x1, φ(x1))) − Bφ(x1) − g(x1, φ(x1))

=

[
2x1

−6x2
1

]
x2

1(−2x3
1) =

[
O(x6

1)
O(x7

1)

]
.

3



So, the center manifold is approximated as

h(x1) =

[
x2

1

−2x3
1

]
+

[
O(x6

1)
O(x7

1)

]
.

Let us check the stability of the system

ẇ = (w2 + O(w6))(−2w3 + O(w7))
⇒ ẇ = −2w5 + O(w9).

w = 0 of this system is asymptotically stable, and so is x = 0 of the original
system.

2 Normal form in SISO nonlinear systems

Consider a SISO nonlinear system{
ẋ = f(x) + g(x)u
y = h(x).

The system has relative degree at a point x0 if

LgL
k
fh(x) = 0,∀x ∈ N (x0), k = 0, 1, . . . , r − 2,

LgL
r−1
f h(x0) �= 0.

If the system has relative degree at x0, then in N (x0), we can transform
the system into a normal form:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ż = f0(z, ξ),
ξ̇1 = ξ2

...
ξ̇r−1 = ξr

ξ̇r = f1(z, ξ) + g1(z, ξ)u.

The zero dynamics is
ż = f0(z, 0).

To obtain a normal form, we take new states as

ξ1 := h(x), ξ2 := Lfh(x), · · · , ξr := Lr−1
f h(x).

As for the z part, first define

D := span {g} .
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Then, compute

D⊥ := {wi(x) : i = 1, . . . , n − 1, wi(x)g = 0} .

For each row vector wi(x) =:
[

wi
1(x) · · · wi

n(x)
]
, if the following

holds:
∂wi

j

∂xk
=

∂wi
k

∂xj
, ∀j, k,

then you can find zi satisfying

dzi = wi.

Choose such zi that are linearly independent of ξ part that has already been
chosen.

Otherwise, you have to change the basis of D⊥. (But how to find such
basis is not required in this course.)

Example

Consider the system ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = sin x1 + u
ẋ3 = x4

ẋ4 = sin 2x1 + (cos x1)u
y = x1,

or equivalently, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ =

⎡
⎢⎢⎢⎣

x2

sin x1

x4

sin 2x1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
f(x)

+

⎡
⎢⎢⎢⎣

0
1
0

cos x1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
g(x)

u

y = x1︸︷︷︸
h(x)

First, let us check if the system has relative degree at x = 0.

Lgh(x) =
∂h

∂x
g =

[
1 0 0 0

]
g = 0

LgLfh(x) = Lg

(
∂h

∂x
f

)
= Lg(x2) =

∂x2

∂x
g = 1 �= 0.
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Hence, relative degree is two.
Next, we transform the system into a normal form. We take new states

as
ξ1 := h(x) = x1, ξ2 := Lfh(x) = x2.

We have to take another two states z1 and z2 (z part). To this end, we first
find

D⊥ := (span {g})⊥ = span
{
eT
1 , eT

3 ,
[
∗ cos x1 ∗ −1

]}
.

We obtain one state z1 from the following observation:

dz = eT
1 ⇒ z1 = x1 (already chosen as ξ1. Ignore!)

dz = eT
3 ⇒ z1 = x3.

To ensure the existence of z2 with dz2 =
[
∗ cos x1 ∗ −1

]
, we verify

∂ cos x1

∂x4
=

∂(−1)
∂x2

(= 0).

So we can solve

dz2 =
[
∗ cos x1 ∗ −1

]
.

or equivalently, ⎧⎪⎪⎨
⎪⎪⎩

∂z2

∂x2
= cos x1

∂z2

∂x4
= −1

One solution is
z2 = (cos x1)x2 − x4.

Since ξ1 := x1, ξ2 := x2 and z1 := x3 do not include x4, this z2 satisfies the
second condition above.

Therefore,

ż1 = ẋ3 = x4 = (cos x1)x2 − z2 = (cos ξ1)ξ2 − z2

ż2 = (− sin x1)ẋ1x2 + (cos x1)ẋ2 − ẋ4

= −(sinx1)x2
2 + (cos x1)(sin x1 + u) − (sin 2x1 + (cos x1)u)

= −(sin ξ1)ξ2
2 − 1

2
sin 2ξ1

ξ̇1 = ẋ1 = x2 = ξ2

ξ̇2 = ẋ2 = sin x1 + u = sin ξ1 + u
y = ξ1.
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The zero dynamics is obtained by setting ξ = 0:

ż1 = −z2

ż2 = 0.
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