5B1823: Geometric Control Theory

Homework 1

Due November 15, 16:50, 2006
You may discuss the problems in group (maximal two students in a group), but each of you must write and submit your own report. Write the name of the person you cooperated with.

1. [3p]. Consider the system

$$
\begin{aligned}
\dot{x} & =\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & -1 & -1 & -2
\end{array}\right) x+\left(\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right) u \\
y & =\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right) x,
\end{aligned}
$$

where $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{T}$.
(a) Is the system controllable?
(b) Compute \mathcal{V}^{*} and find all friends F of \mathcal{V}^{*}.
2. [2p]. Consider the same system as in Problem 1. Suppose we are given a three dimensional space $X Y Z$. We identify x_{1} in the system as x, x_{2} as y, x_{3} as z and x_{4} as \dot{z}.
(a) What is the set of points on the $X Y$ plane the origin can reach in finite time (by some control), via trajectories lying on the plane?
3. [5p]. Consider

$$
\begin{aligned}
\dot{x} & =\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & -3 & -3
\end{array}\right) x+\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) u+E w, \\
y & =\left(\begin{array}{ll}
a & 1
\end{array}\right) x
\end{aligned}
$$

where w is the disturbance.
(a) Derive the minimum constraint on E such that $D D P$ is solvable for the cases $a=2$ and $a=-2$. Find a state feedback $u=F x+v$ that solves the $D D P$ problem for $a=-2$.
(b) Can we find a $u=F x+v$ that solves the $D D P$ problem for any E that meets the minimum constraint obtained above while makes the closed-loop system stable, i.e. $A+B F$ has only eigenvalues with negative real part (Discuss both the cases $a=2$ and $a=-2$)?
(c) Can we find an output feedback $u=K y+v$ that solves the respective DDP?
4. [5p]. Consider

$$
\begin{aligned}
\dot{x}_{1} & =-2 x_{1}+x_{4}+u_{1} \\
\dot{x}_{2} & =x_{2}+2 u_{2} \\
\dot{x}_{3} & =x_{2}+x_{4}+u_{2} \\
\dot{x}_{4} & =x_{3} \\
y_{1} & =x_{1}-x_{3} \\
y_{2} & =x_{4}
\end{aligned}
$$

(a) What is the relative degree for the system?
(b) Convert the system into the normal form and compute the zero dynamics.
(c) What is the \mathcal{R}^{*} contained in $\mathrm{Ker} C$?

