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which must hold for all x ∈ Rn. This means that the matrices Pn must satisfy
the discrete-time Riccati equation

PN = Q0

Pn = Q+ AT (Pn+1 − Pn+1B(R +BTPn+1B)−1BTPn+1)A
(2.5)

for n = N − 1, N − 2, . . . , 0. Note that Pn ≥ 0 for all n, which implies that the
inverse in (2.5) is well defined. To see that Pn ≥ 0 we notice that PN ≥ 0 because
Q0 ≥ 0. Furthermore, the minimum in (2.4) must be positive for n = N − 1
because PN , Q and R are all positive semidefinite. Induction proves the result.

To summarize, we have that the optimal cost-to-go and the optimal feedback
control law are

J(n, x) = xTPnx

u∗n = µ(n, x) = −(R +BTPn+1B)−1BTPn+1Ax

where Pn is the solution to the Riccati equation in (2.5).

2.2 A Discrete Version of PMP

Consider the following discrete time optimal control problem

minφ(xN) +
N−1∑

k=0

f0(k, xk, uk) subj. to

{
xk+1 = f(k, xk, uk),

x0 is given, G(xN) = 0
(2.6)

where G(x) =



g1(x)

...
gp(x)


 satisfies the usual regularity assumption, i.e. the gradients

∇gk(x) are linearly independent. This is a special case of (2.2) in which X = Rn

and U = Rm. The dynamical programming approach to solving such problems
is characterized by the following properties

• Feedback solutions are obtained. This means that we know the optimal
control value for every position of the state vector x. This gives robustness
to the closed loop system in the following sense: If the solution is perturbed
by a disturbance then the controller still knows the optimal action.

• The solution is obtained using backwards recursion, which can be compu-
tationally demanding. One way to understand this is that we compute
the optimal control value for every possible system state. What we win in
robustness we loose in computational complexity.

• Sufficient condition.
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We next use the Lagrange multiplier rule (also known as the Karush-Kuhn-
Tucker conditions (KKT), or the first order optimality conditions) to obtain nec-
essary conditions for optimality. The resulting conditions are the discrete version
of the so-called Pontryagin minimization principle that we will study later in the
course.

We recall from the optimization courses (the KKT conditions)

First order necessary condition (KKT): Suppose x∗ is a (locally) optimal
solution of

min f(x) subject to G(x) = 0

where f : Rn → R and G : Rn → Rp are continuously differentiable and the
constraint set is regular, i.e., the gradients ∇gk(x) are linearly independent. Then
there exists a vector of Lagrange multipliers λ ∈ Rp such that

(i) G(x∗) = 0

(ii) ∇xl(x
∗, λ) = 0, where l(x, λ) = f(x) + λTG(x) is the Lagrangian.

We can use it to derive the following result.

Proposition 1. Let {u∗k}N−1
k=1 be an optimal control for (2.6) and let {x∗

k}N
k=0

be the corresponding trajectory. Then there exists an adjoint variable (Lagrange
multiplier) {λk}N

k=1 such that

(i) (adjoint equation)

λk =
∂H

∂x
(k, x∗k, u

∗
k, λk+1), k = 1, . . . , N − 1

(ii) (“pointwise minimization”)

∂H

∂u
(k, x∗k, u

∗
k, λk+1) = 0, k = 0, 1, . . . , N − 1

(iii) (Boundary condition)

λN =
∂φ

∂x
(x∗N) +Gx(x

∗
N)Tν

for some ν ∈ R
p.

where the Hamiltonian is

H(k, x, u, λ) = f0(k, x, u) + λTf(k, x, u)
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Proof. Let

z =
[
xT

1 . . . xT
N uT

0 . . . uT
N−1

]T

F(z) = φ(xN) +
N−1∑

k=0

f0(k, xk, uk)

G(z) =




f(0, x0, u0) − x1
...

f(N − 1, xN−1, uN−1) − xN

G(xN)




The Lagrange multiplier rule says that a necessary condition for optimality of

minF(z) subject to G(z) = 0

is that there exists a Lagrange multiplier λ̂ such that

∂l

∂z
(z∗, λ̂) = 0 where l(z, λ̂) = F(z) + λ̂TG(z)

In our problem the Lagrange multiplier vector is λ̂ =
[
λT νT

]T
. We get

∂l

∂xk

(z∗) =
∂f0

∂x
(k, x∗k, u

∗
k) + λT

k+1

∂f

∂x
(k, x∗k, u

∗
k) − λk, k = 1, . . . , N − 1

∂l

∂xN

(z∗) =
∂φ

∂x
(x∗N) − λN +Gx(x

∗
N)Tν

∂l

∂u
(z∗) =

∂f0

∂u
(k, x∗k, u

∗
k) + λT

k+1

∂f

∂u
(k, x∗k, u

∗
k), k = 1, . . . , N − 1

Hence, the condition
∂l

∂z
(z∗, λ̂) = 0 together with the definition of the Hamilto-

nian function H(k, xk, uk, λk+1) proves the proposition.

The propostion is often used in the following way

1. Define the Hamiltonian: H(k, x, u, λ) = f0(k, x, u) + λTf(k, x, u)

2. Perform pointwise minimization, i.e. find a function µ(k, x, λ) such that
∂H

∂u
(k, x, u, λ) = 0. Hence the candidate optimal control is u∗

k = µ(k, x∗k, λk).

3. Solve the two point boundary value problem (TPBVP)

xk+1 =
∂H

∂λ
(k, xk, µ(k, xk, λk+1), λk+1) = f(k, xk, µ(k, xk, λk+1)), G(xN) = 0

λk =
∂H

∂x
(k, xk, µ(k, xk, λk+1), λk+1), λN =

∂φ

∂x
(xN) +Gx(xN)Tν
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We call this a two point boundary value problem because the only unknown
to determine are λ0 and xN . Once they are known then all other state
and adjoint variables can be computed from the recursive equations. It is
interesting to note that the nonlinear program in (2.6) has a lot of structure
that can be exploited.

The PMP approach is characterized by the following properties.

• It results in an open loop control program. This mean that the optimal
solution is only known for a particular initial condition x0. If the solution is
perturbed from the optimal by a disturbance then the optimal control may
no longer be effective. The resulting system is therefore more sensitive to
disturbances.

• It is generally easier to compute.

• It gives only a necessary condition for optimality.

2.3 Infinite Time Horizon Optimization

Let us consider multistage decision problems over an infinite time horizon. We
consider the following general form of such problems

min Σ∞
k=0f0(xk, uk) subj. to





xk+1 = f(xk, uk)
x0 given
uk ∈ U(xk)

(2.7)

In order for the cost to be finite we need that f0(xk, uk) → 0 as k → ∞. An
interpretation is that (2.7) models problems where convergence to some particular
set of values is desired. In our discussion we will assume that the state vector
converges to zero.

The following assumptions are made

Assumption 1. We assume (w.l.o.g) that 0 ∈ X, U(0) = {0}, f(0, 0) = 0 and
f0(0, 0).

The assumption implies that zero is an equilibrium point of the discrete dy-
namics

xk+1 = f(xk, uk)

This means that if (x0, u0) = (0, 0) then the zero control uk = 0, ∀k implies that
xk = 0, ∀k. In order to obtain the simplest possible result we will assume that
the cost function and therefore the value function (the optimal cost of (2.7)) are
positive definite.
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Definition 1. A function V : Rn → R is called strictly positive definite2 if
V (0) = 0 and there exists ε > 0 such that V (x) ≥ ε‖x‖2 for all x ∈ Rn.

Example 8. A quadratic form V (x) = xTPx, where P = P T , is strictly positive
definite if P > 0, i.e., if all eigenvalues of P are positive.

Assumption 2. We assume that f0 is strictly positive definite, i.e. there exists
ε > 0 such that f0(x, u) ≥ ε(|xk|2 + |uk|2).

Let us now define the optimal function (value function) corresponding to (2.7)

J∗(x0) = min
uk∈U

∞∑

k=0

f0(xk, uk)

The value function is independent of time since the dynamics and cost function
of (2.7) both are independent of time (the stage index k).

Theorem 2. Suppose Assumption 1 and Assumption 2 hold. If there exists a
strictly positive definite, function V : X → R

+ that satisfies the Bellman equation

V (x) = min
u∈U(x)

{f0(x, u) + V (f(x, u))} (2.8)

then

(a) V (x) = J∗(x)

(b) u∗ = µ(x) = argminu∈U(x) {f0(x, u) + V (f(x, u))} is an optimal feedback
control that results in a globally convergent closed loop system, i.e. for any
x0 ∈ X the optimal solution (xk, µ(xk)) → 0.

Remark 2. The assumptions are stronger than necessary but it simplifies the
proof.

Proof. Sketch: We first prove that uk = µ(xk) gives a globally convergent system.
From the Bellman equation we get

N∑

k=0

f0(xk, µ(xk)) =
N∑

k=0

V (xk) − V (xk+1)

= V (x0) − V (xN+1)

where we use xk+1 = f(xk, µ(xk)). Since V (x) ≥ 0 and N was arbitrary, we have

lim
N→∞

N∑

k=0

f0(xk, uk) ≤ V (x0) (2.9)

2This definition of strictly positive definite is much stronger than normal. It is used to
simplify the understanding of this section.
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Hence, since f0(xk, µ(xk)) is strictly positive definite it follows that f0(xk, µ(xk)) →
0 as k → ∞. Otherwise the sum would be unbounded, which violates (2.9). This
also implies that (xk, µ(xk)) → (0, 0).

We have now proved that u = µ(x) is “stabilizing” in the sense that the
closed loop state vector converges to zero. We will next see that it also gives the
minimal cost. Consider an arbitrary control sequence {uk}∞k=0, which results in a
convergent solution. We have

lim
N→∞

N∑

k=0

f0(xk, uk) ≥ lim
N→∞

N∑

k=0

V (xk) − V (xk+1)

= V (x0) − lim
N→∞

V (xN) = V (x0)

where we used that xN → 0 ⇒ V (xN) → 0. Since the first inequality becomes
an equality when uk = µ(xk), we get

V (x0) =
∞∑

k=0

f0(xk, µ(xk)) ≤
∞∑

k=0

f0(xk, uk)

This proves the optimality.


