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1 Dynamic Programming

1.1 Discrete Dynamic Programming
General multistage decision problem

Tr1 = f(k, T, ug)
min ¢(ry) + Xp o fo(k, Tk, ug)  subj. to Zo given (1)
Uk € U(k,fk)

Introduce the optimal cost-to-go function

zp1 = f(k, T, ug)
J*(n,z) = min ¢(xy) + St fo(k, 2k, ux) subj. to { z, ==
Uk € U(li‘,l‘k)

forn =0,...,N —1 and J*(N,z) = ¢(x). In particular, the optimal solution
of (1) is J*(0, zo).

Theorem 1. Consider the backwards dynamic programming recursion

J(N,z) = ¢(z),
J(n,x) = min ){fo(n,x,u)+J(n+1,f(n,m,u))}, n=N-1,N-2,...,0

wel(n,z
Then
(@) J*(n,z) = J(n,z) for alln=0,...,N, z € X,,.
(b) The optimal feedback control in each stage is obtained as

uy, = p(n, ) = argming, ey, {1 fo(n, 2, u) + J(n, f(n +1,7,u))}.



1.2 Continuous Time Dynamic Programming

consider the optimal control problem

min ¢(z(ty)) +/tff0(t,x(t),u(t))dt subj. to (2)

%

{sb(t) = f(t, 2(t), u(t))

z(t;) =z, u(t) €U

where t; and ¢y are fixed initial and terminal times and z; is a fixed initial point.
The end point () is free and can take any value in R™. The control is a piecewise
continuous function, which satisfies the constraint u(t) € U, for t € [¢;, ¢/].

We define the optimal cost-to-go function as (this is also called the value
function)

J*(to, zo) = In(lgl J(to, zo, u(+))

where the minimization is performed with respect to all admissible controls. This
means in particular that the optimization problem (2) can be written

J*(ti, zi) = m(1§1 J(ti, i, u()).

Proposition 1. The optimal-cost-to-go satisfies the Dynamic Programming Equa-
tion

t
J*(to, zo) = m(1§1 { fo(s, z(s),u(s))ds + J*(t, x(t))} .
u(- to
Theorem 2. Suppose
(1) V :[ti,tf] x R* — R is C' (in both arguments) and solves HIBE

ov

-t =min {0 + SL 0,0 0,0

Vity, x) = o(x)

(3)

oV
(i1) p(t,z) = arg Inellljl {fo(t, z,u) + %(t, )T f(t, u)} is admissible.
Then
(a) V(t,x) = J*(t,x) for all (t,z) € [t;,t;] X R".
(b) wu(t,z) is the optimal feedback control law, i.e. u*(t) = p(t, z(t)).

For a given optimal control problem on the form (2) we take the following
steps!

IThe same optimization as in step 2 is a part of the conditions in PMP.
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1. Define the Hamiltonian
H(t,z,u, ) = folt,z,u) + AT f(t,z,u).
Here A € R" is a parameter vector.
2. Optimize pointwise over u to obtain

- . . _ . T
p(t, x, \) = arg min H(t,x,u, \) = arg min {fo(t, z,u) + N f(t,x, u)} )

3. Solve the partial differential equation

oV ~ oV
_E(t’ z)=H (t,x, a(t,x, A), 8—x(t’ x))

subject to the initial condition V (¢;,z) = ¢(z).

Then u(t, z) = nu(t, z, aa—v(t, x)) is the optimal feedback control law, i.e. u*(t) =
z
p(t, (1))

2 PMP

Autonomous Systems
We consider the optimization problem
@(t) = f(x(t), u(t))

min ¢(z(ts)) + ' fo(z(t),u(t))dt subj. to z(0) =€ S;, z(t;) €Sy (4)
0 u(t) e U, t; >0

where Sy = {z : G(z) = 0} and

9p (x)

We have the following optimality conditions for problem (4): (Note: We IG-
NORE the pathological case and USE \g = 1.)
PMP: Autonomuous Systems: Define the Hamiltonian

H(z,u,\) = fo(z,u) + A f(z,u)

Assume that (z*(t),u*(t),}) is an optimal solution to (4). Then there exists an
adjoint function A(-) that satisfies the following conditions
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(8) A(t) = —Hay(z* (1), w (1), A(1))

(i6) H(x*(£), u*(t), A(t)) = miney H(z*(£), v, A(£)) = 0 for all ¢ € [0,3] (+)
(i) A(0) L S;
() Altj) = Vola*(t7)) L 5

Remark 1. Condition (iv) is equivalent to

dgx (" (¢7)) D91 (a* ()
oz e 0xn
(A(t}) = A Vo(z*(t})))"v =0 for all v s.t. : : v=20
9gp(z” (7)) Agp(z™ (7))
oz o Oy

which also can be written A(t}) — AoV é(z*(t})) L Sy. Another equivalent formu-
lation of this transversality condition is

A7) = XVe(a*(t7) + Ga(a(t})) v

= X Vo(z™(t})) + Z Ve Vgr(z®(t}))

k=1
for some vector v € R?.

Special Case 1: It is reasonable to assume that the terminal cost and the termi-
nal manifold involve two disjoint set of states. For example, ¢(z) = ¢(2pi1,-- ., Zn)

and gx(z) = gz(z1,...,2,), k = 1,...,p. Then the transversality condition re-
duces to

. 99 (x(t}))
Apr1(t}) aw,,+f1
: =1 ()
An (t5 0 (x(t}))
( f) axnf
and the remaining variables (A{(¢%),..., A,(%%)) remain undetermined.
f pA"f

Special Case 2: If S; = {z;} (a given point) then there is no constraint on A(0).
Special Case 3: If Sy = R" then A(t;) = Vé(z*(t}))-

Special Case 4: If S; = R" and ¢ = 0 then A(t}) = 0.

Special Case 5: If Sy = {z} (a given point) and ¢ = 0 then there is no con-
straint on A(ty).

Special Case 6: If the final time is fixed then (x) is replaced by H (z*(t), u*(t), A(t))
{}Iéi(}l H(z"(t),v, A(t)) = const for all t € [0, ;].
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Nonautonomous systems

We consider the optimization problem

b #(t) = f(t, x(t), u(t))
min ¢(ts, z(ty)) +/ fo(t,z(t),u(t))dt subj. to z(t;) = x;, z(ty) € Sy(ty)

f u(t) e U, t; >t
(6)
where the terminal manifold may depend on time:
g1 (ta .T)
Si(t) ={z € R" : G(t,z) =0} where G(t,z)= :
gp(t, )
and as usual we assume that the functional matrix
991 () dg1(z)  9g1(x)
ox1 ot Oz ot
d4p(2) dgp(z)  Dgn()
ox1 o Oxn ot

has full rank.

We get the following optimality conditions for problem (6):(Note: We IG-
NORE the pathological case and USE Ay = 1.)
PMP: Nonautonomuous Systems: Define the Hamiltonian function

H(t,z,u,\) = folt, z,u) + A" f(t,2,u)

Assume that (2*(t),u*(t),t}) is an optimal solution to (6). Then there exists an
adjoint function A(-) that satisfies the following conditions

(i) A(t) = —Ha(t, 2" (1), u" (1), A1)
(17) H*(t) = minyey H(t, 2*(t),v, A(t)) satisfies
H*(t) = H*(t}) — / i 86[;] (5,2%(s),u™(s), A(s))ds, t € [tit]}]

t
p
Y (15) = = S (5,0°(1)) — S (65,07 (15)
k=1

(7)
(499) (A(t}) — d=(t}, v*(t7)) L Sf(t}), which means that there must exist a vector

V= [1/1 V,,]T such that

9¢

Zuk (a7 (17) + 5 (6, 27(t7))



Special Case: If the terminal time is fixed then we can remove the time depen-
dence of ¢ and Sy, i.e., the g, are now only functions of the state. Conditions
(74) and (i7i) are then replaced by

(17) H*(t) = minyey H(t, 2*(t), v, A(t)) satisfies
H*(t) = H*(tf) — / ' %—Ij(s,x*(s),u*(s),)\(s)ds, t € [t ty]

t
(i1) A(ty) — Vo(z*(ts)) L Sy or equivalently

Mig) = S 1) + 22 (1))

. T
for some suitable vector v = 11 ... 1] .

3 How to USE PMP

A professional way to address optimal control problems is to start investigating
the vector field and the cost function to determine if

e it is possible to conclude that there must exist an optimal solution,

e the optimal solution is unique (generally hard).

The next step (in our case it would be the first) is to use PMP. We take the
following steps (we consider problem (6) and assume Ay = 1)

1. Define the Hamiltonian: H (¢, z,u, \) = fo(t, z,u) + XL f(t, z,u)

2. Perform pointwise minimization: 7i(¢, z, \) = argmin, ., H (¢, z,u, A), which
means that a candidate optimal control is u*(t) = u(t, z(t), A(t)).

3. Solve the Two Point Boundary Value Problem (TPBVP)

(0) = —Hat, 20, Tt 2(0), A, D), A(tg) = 215, 2(t) L S5(ty)
#(t) = Ha(t,2(0), J(t, 2(0), 1)), o(t) =i, alty) € Sy(ty)

One of the difficulties when solving a TPBVP is to find appropriate bound-
ary conditions for z and A. In order to obtain conditions that help us find
candidates for the optimal transition time we also use (7) or (*). Some-
times we can determine the unknown parameters by plugging a parameter-
ized control into the cost function and then optimize with respect to the
parameters. This is a finite dimensional optimization problem.

4. Compare the candidate solutions obtained using PMP.



4 Infinite Time Horizon Optimal Control

Consider the optimal control problem

T = f(z,u)

z(0) = zo, u(t) € U(z) ®)

min/ fo(z,u)dt subject to {
0

We assume without loss of generality that we want to control the system to an
equilibrium point at (x,u) = (0,0). This means that we assume f(0,0) = 0. In
order to obtain a finite cost we further need to assume fy(0,0) = 0.

Definition 1. A function V : R" — R is called positive semi-definite if V(0) = 0
and V(z) > 0 for all z € R™. If it satisfies the stronger condition V(z) > 0
for all x # 0 then it is called positive definite. It is called radially unbounded if
V(z) — oo when ||z|| — oo.

Example 1. A quadratic form V (z) = 7 Pz, where P = P’ is positive definite
(semi-definite) if P > 0 (P > 0), i.e., if all eigenvalues of P are positive (non-
negative). It is radially unbounded if P > 0.

Assumption 1. We assume that f; is positive semi-definite and positive definite
in u, i.e., fo(z,u) >0, V(z,u) € R"™ and fy(z,u) > 0 when u # 0.

Assumption 2. We will assume that the artificial output h(x) = fo(z,0) of the
system & = f(x,0) is observable in the sense that h(z(t)) = 0 for all ¢ > 0 implies
that z(¢) = 0 for all t > 0.

Let us now define the optimal cost-to-go function (value function) correspond-
ing to (8)

J*(xo) = m(1§1/ fo(z,u)dt.

The value function is independent of time since the dynamics and cost function
of (8) both are independent of time.

Theorem 3. Suppose Assumption 1 and Assumption 2 hold and
(1) V € C* is positive definite, radially unbounded, and satisfies the (infinite
horizon) HIBE

min {fo(x, u) + (Z—Z(x)Tf(x, u)} =0 9)

uelU

(i) p(x) = argmin,ey { fo(z,u) + Z5(2)" f(z, u)}.
Then



(a) V(z) = J*(z)
(b) u = p(zx) is an optimal globally asymptotically stabilizing feedback control.
We next consider the special case of linear quadratic optimal control

Theorem 4. Consider
J*(z9) =min / (27 Qz + u” Ru]dt
0

z = Az + Bu

subject to
z(0) = z¢

where @ = CTC and R > 0. We assume that (C, A) is observable and that (A, B)
is controllable. Then

a x9) = xy Pxo, where P is symmetric and positive definite (P = >

J* P here P i tri d tive definite (P = PT >0
1s the unique positive definite solution to the Algebraic Riccati Equation
(ARE)

ATP+PA+Q=PBR'B"P. (10)

(b) u(z) = —R BT Pz is the optimal, stabilizing, feedback control.

Remark 2. Conclusion (b) in particular means that the closed loop system matrix
A — BR™'BT P has all eigenvalues in the open left half plane.

The linear quadratic regulator in Theorem 4 satisfies certain robustness prop-
erties. The following inequality derived from the ARE is of key importance

Proposition 2. Let L = R™*BTP, where P is a solution to the ARE in (10).
Then the transfer function

G(s)=L(sI — A)™'B
satisfies the inequality

(I + G(jw))R(I + G(jw)) > R (11)

5 Second order variations

Consider

&= f(t, (1), ul?))

z(0) = o, (12)

ty
min ¢(z(ty)) -I—/ fo(t,z(t),u(t))dt subj to {
0
where ¢, fy, and f are twice continuously differentiable with respect to x and u.
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Proposition 3. Suppose (z*(-), u*(-)), and \(-) are such that
(1) &*(t) = f(t, 2" (t), u(?)), z*(0) = o,

(ita) A(t) = —Ha(t, 2" (t),u*(£), A1), Alty) = ba(a*(ty))

(12b) Hy(t, 2" (), u"(t),A(t)) =0

(11ia) Pez(a*(t5)) >0

(i13b) H:,(t) > 0 and [g* Eg g%ugg} > 0, where H}, (t) = Hyy(t, 2*(t), u*(t), \(t))

ur uu

and stmilarly for H;  HY, and H;,.

Then (x*(-),u*(+)) is a local minimum of (12).



