

## Homework 2: 5B1872: Optimal Control Spring 2006 Grading: You may use $\frac{\text{your credit}}{20}$ extra points on the exam.

1. Consider the time optimal control problem

$$\min t_f \quad subj.to \quad \begin{cases} \ddot{y} = u, \ |u| \le 1, \ t_f \ge 0 \\ y(0) = \alpha, \ y(t_f) = 0 \\ \dot{y}(0) = \beta, \ \dot{y}(t_f) \ge 0 \end{cases}$$

An interpretation in terms of the rocket car example is that we want to pass the origin with positive velocity as soon as possible.

- (a) What are the possible optimal switching sequences?
- (b) Sketch the optimal solution in a phase plane plot where the switching curve and the control values should be clearly indicated.

......10p

**2.** A lifeguard is standing on the beach at position (0,0) when he discovers a person in distress at position (a,b). The equations of motion of the lifeguard are

$$\dot{x}(t) = v(y(t))\cos(u(t)), \quad x(0) = 0, \quad x(T) = a > 0$$
  
 $\dot{y}(t) = v(y(t))\sin(u(t)), \quad y(0) = 0, \quad y(T) = b > 0$ 

where his speed depends on the distance to the beach

$$v(y) = \begin{cases} 1, & 0 \le y \le \frac{b}{2} \\ \frac{1}{2}, & \frac{b}{2} < y \le b \end{cases}$$

Find the optimal control function u(t) such that the lifeguard reaches the person in shortest time. Do the numerical calculation of the intersection point with the line  $y = \frac{b}{2}$  for the case when b = 4 and a = 2. Note that the function v(y) is not smooth, therefore you have to treat the two regions separately and then combine using, for example, dynamic programming.

.....(10p)

3. Determine the bang-bang control for the following time optimal control problem

1

min 
$$T$$
 subj. to 
$$\begin{cases} \dot{x} = x^2 - \frac{1}{4} - xu \\ x(0) = \frac{1}{2}, \ x(T) = -\frac{1}{2} \\ |u| \le 1 \end{cases}$$



Figur 1: The lifeguard is positioned at (0,0) and wants to reach the person who is fixed at (a,b) in as short time as possible.

| You are allowed to compute the switching time numerically. |      |              |     |     |         |              |     |      |     |          |      |                    |          |
|------------------------------------------------------------|------|--------------|-----|-----|---------|--------------|-----|------|-----|----------|------|--------------------|----------|
| Hint.                                                      | : St | udy          | the | swi | tching  | function.    | Use | that | the | solution | of a | $\it differential$ | equation |
| $\dot{\lambda}(t)$ :                                       | = g  | $(t)\lambda$ | (t) | has | constan | $nt \ sign.$ |     |      |     |          |      |                    |          |
|                                                            |      |              |     |     |         |              |     |      |     |          |      |                    | (10p)    |