Homework 1: 5B1872: Optimal Control Spring 2006 Grading: You may use your credit $\frac{20}{20}$ extra points on the exam.

1. Consider the system in Figure 1.
(a) Determine a diagonal state space realization of the linear system (the A matrix should be diagonal)

$$
\begin{aligned}
\dot{x} & =A x+B u, x(0)=0 \\
y & =C x
\end{aligned}
$$

Hint: Do a partial fraction expension of $G(s)=\frac{s-1}{s^{2}+3 s+2}$

Figur 1: A signal is sent through a filter with transfer function $G(s)=\frac{s-1}{s^{2}+3 s+2}$.
(b) Assume the control is constrained as $|u(t)| \leq 1$. Determine an explicit expression for the optimal input (as a function of t_{f}) such that the output $y\left(t_{f}\right)$ is maximized, i.e. solve

$$
\max C x\left(t_{f}\right) \quad \text { subject to } \quad\left\{\begin{array}{l}
\dot{x}=A x+B u, x(0)=0 \tag{7p}\\
|u(t)| \leq 1
\end{array}\right.
$$

2. Consider the DC-servo in Figure 2. A mathematical model for the relation between the voltage, u, and the angle of the shaft, θ, is

$$
\ddot{\theta}+\dot{\theta}=u
$$

We assume that the servo starts at rest, i.e. $\theta=\dot{\theta}=0$. We want to design a voltage signal such that the angle θ tracks a sinusoid over the time interval $[0,8 \pi]$. One way to do this is to solve the following optimization problem

$$
\min q_{0}\left[\theta(8 \pi)^{2}+\dot{\theta}(8 \pi)^{2}\right]+\int_{0}^{8 \pi}\left[q(\theta(t)-\sin (t))^{2}+r u(t)^{2}\right] d t
$$

subject to the linear dynamics

$$
\begin{equation*}
\ddot{\theta}(t)+\dot{\theta}(t)=u(t), \quad \theta(0)=\dot{\theta}(0)=0 \tag{1}
\end{equation*}
$$

The terminal cost is used in order to bring shaft close to rest at $\theta=0$ at the terminal time.
a Use Matlab to solve the problem. Choose q, q_{0} and r such that $|u(t)| \leq 2$ and such that good tracking is obtained. Plot your solutions $\theta(t)$ and $u(t)$. Include the Matlab code in the solution you hand in.
b How good solution can you get if q is fixed to be $q=1$?

Figur 2: Control the DC-servo such that the angle θ tracks a sinusoidal.
3. A decision maker must choose between two activities over a time interval $\left[0, t_{f}\right]$. Each activity earns a reward at rate $g_{k}(t), k=1,2$. Every switch between the two activities costs $c>0$. As an example, the reward for starting with activity 1 , switch to activity 2 at time t_{1} and back to 1 at time $t_{2}>t_{1}$ earns the total reward

$$
\int_{0}^{t_{1}} g_{1}(t) d t+\int_{t_{1}}^{t_{2}} g_{2}(t) d t+\int_{t_{2}}^{t_{f}} g_{1}(t) d t-2 c
$$

We want to find a switching sequence that maximize the total reward. Switching can only occur inside the the interval $\left(0, t_{f}\right)$.
Assume the function $g_{1}(t)-g_{2}(t)$ changes sign a finite number of times in the interval $\left(0, t_{f}\right)$.
(a.) Formulate the problem as a sequential optimization problem and then formulate the corresponding DP recursion.
(b.) Solve the dynamic programming problem in (a) for the case when $c=2, t_{f}=3$ and

$$
g_{1}(t)=\left\{\begin{array}{ll}
4, & 0 \leq t \leq 1 \\
0, & 1 \leq t \leq 2 \\
5, & 2 \leq t \leq 3
\end{array}, \quad g_{2}(t)= \begin{cases}1, & 0 \leq t \leq 1 \\
6, & 1 \leq t \leq 2 \\
2, & 2 \leq t \leq 3\end{cases}\right.
$$

