

KTH Matematik

Tentamen i 5B1872 Optimal Control
 Saturday March 92006 8.00-13.00
 Answers and solution sketches

1. $(a) \lambda(T)=\left[\begin{array}{c}1 \\ 1 \\ \text { free } \\ 0 \\ \vdots \\ 0\end{array}\right]$
(b) There is no feasible solution, hence $=\infty$
(c) $J=1$
(d) The optimal control for the unconstrained problem, $u(t)=-\frac{x(t)}{3-2 t}$, satisfies the constraint $|u(t)| \leq 1$ and is thus also optimal for the constrained problem. Indeed, the closed loop state satisfies $|x(t)| \leq 1$.
2. (a) The sequential optimization problem has the form

$$
\max \sum_{k=0}^{N-1} u_{k} \quad \text { subj. to } \quad\left\{\begin{array}{l}
x_{k+1}=x_{k}+\theta\left(x_{k}-u_{k}\right), x_{0} \text { given } \\
0 \leq u_{k} \leq x_{k}
\end{array}\right.
$$

The corresponding dynamic programming recursion is

$$
\begin{aligned}
V_{k}(x) & =\max _{0 \leq u \leq x}\left\{u+V_{k+1}(x+\theta(x-u))\right\} \\
V_{N}(x) & =0
\end{aligned}
$$

(b) We have

$$
\begin{aligned}
V_{3}(x) & =0 & & \\
V_{2}(x) & =\max _{0 \leq u \leq x} u=x, & & \Rightarrow u_{2}=x \\
V_{1}(x) & =\max _{0 \leq u \leq x}\{u+x+\theta(x-u)\} & & \\
& =\max \{(1+\theta) x, 2 x\}=2 x, & & \Rightarrow u_{1}=x \\
V_{0}(x) & =\max _{0 \leq u \leq x}\{u+2(x+\theta(x-u))\} & & \Rightarrow u_{0}=x
\end{aligned}
$$

Hence it is optimal to spend all the time. Note, the problem becomes more interesting if the time horizon is longer, i.e. when N is larger.
3. (a) Let us consider the problem in (a) and (b) simultaneulsy. The ARE becomes

$$
2 a p-p^{2}=0
$$

We are generally looking for a postive definite solution. We have

$$
p= \begin{cases}2 a, & a>0 \\ 0, & a<0\end{cases}
$$

The optimal control becomes

$$
u=-p x= \begin{cases}-2 a, & a>0 \\ 0, & a<0\end{cases}
$$

The closed loop system $\dot{x}=(a-p) x=-|a| x$ is stable in both cases. Note that p only is positive semi-definite when $a<0$, which is a case not covered by the result in the course. However, it is obvious that $u=0$ is optimal because we only penalize the control and the system converges to zero with $u=0$.
(b) The open loop system is unstable when $a>0$ and the control $u=-2 a x$ stabilizes the system. The open loop system is stable when $a<0$ and no control is needed to bring the state to zero. Since the cost function only penalizes the control it is optimal to do nothing.
Note, the case $a=0$ is not well defined. The solution $u=-\epsilon x$ stabilizes the system but the corresponding cost is

$$
\int_{0}^{\infty} \epsilon^{2} e^{-2 \epsilon t} x_{0}^{2} d t=\frac{\epsilon x_{0}^{2}}{2}
$$

which becomes smaller the smaller ϵ is. However, the limit when $\epsilon=0$ is not stabilizing, i.e. $u=0$ does not stabilize the system.
4. The optimal control problem has the formulation

$$
\max x_{2}(1) \text { subj. to } \begin{cases}\dot{x}_{1}(t)=-x_{1}(t)+u(t), & x_{1}(0)=0 \\ \dot{x}_{2}(t)=x_{1}(t), & x_{2}(0)=0 \\ 0 \leq u \leq 1 & \end{cases}
$$

The Hamiltonian becomes

$$
H(x, u, \lambda)=\lambda_{1}\left(-x_{1}+u\right)+\lambda_{2} x_{1}
$$

From the pointwise optimization we get

$$
u=\operatorname{argmax}_{0 \leq u \leq 1} H(x, u, \lambda)= \begin{cases}1, & \lambda_{1}>0 \\ 0, & \lambda_{1}<0\end{cases}
$$

We thus expect a switching control law. The adjoint equation becomes

$$
\begin{aligned}
& \dot{\lambda}_{1}=\lambda_{1}-\lambda_{2} \\
& \dot{\lambda}_{2}=0
\end{aligned}
$$

with terminal condition determined by

$$
\lambda(1)-\nabla \Phi(x(1)) \perp S_{f}
$$

where $\Phi(x)=x_{2}$ and $S_{f}=\left\{x: x_{1}(1)=0.5\right\}$. Hence, we get $\lambda_{1}(1)=$ free and $\lambda_{2}(1)=1$. We can now solve the adjoint system, which gives

$$
\begin{aligned}
& \lambda_{1}(t)=1+\left(\lambda_{1}(0)-1\right) e^{t} \\
& \lambda_{2}(t)=1
\end{aligned}
$$

There can be at most one switch in the control function since $\lambda_{1}(t)$ is a monotonic function. From the problem it is now clear that the control must have the form

$$
u(t)= \begin{cases}1, & 0 \leq t<t_{s} \\ 0, & t_{s}<t \leq 1\end{cases}
$$

We can determine the switching time from the constraint $x(1)=0.5$. We have $x_{1}\left(t_{s}\right)=1-e^{-t_{s}}$ and

$$
x(1)=e^{-\left(1-t_{s}\right)}\left(1-e^{-t}\right)=0.5
$$

which gives $t_{s}=\ln \left(\frac{2+e}{2}\right)$.
5. The optimal control problem is

$$
\max \int_{0}^{t_{f}} e^{-\alpha t} u(t) p(u(t)) d t \quad \text { subj. to } \quad\left\{\begin{array}{l}
\dot{x}(t)=-u(t), \quad x(0)=x_{0} \\
t_{f} \geq 0, x\left(t_{f}\right)=0
\end{array}\right.
$$

The Hamiltonian is $H(t, x, u, \lambda)=e^{-\alpha t} u p(u)-\lambda u$, and the terminal manifold is $S_{f}(t)=\{0\}$. The adjoint equation is $\dot{\lambda}=-H_{x}=0$, which implies $\lambda(t)=$ const (the terminal condition gives no information). The pointwise optimization gives

$$
u=\operatorname{argmax}_{u} e^{-\alpha t} u p(u)-\lambda u=\operatorname{argmax}_{u} e^{-\alpha t} u(1-u / 2)-\lambda u=1-\lambda e^{\alpha t}
$$

where we used that $u \leq 2$ because the cost is zero for $u>2$, which obviously cannot be optimal. From PMP we have the condition (along the optimal solution)

$$
\begin{aligned}
& H\left(t_{f}, x\left(t_{f}\right), u\left(t_{f}\right), \lambda\left(t_{f}\right)\right)=-\sum_{k=1}^{p} \nu_{k} \frac{\partial g_{k}}{\partial t}\left(t_{f}, x\left(t_{f}\right)\right)-\frac{\partial \phi}{\partial t}\left(t_{f}, x\left(t_{f}\right)\right)=0 \\
& \Leftrightarrow \\
& e^{-\alpha t_{f}} u\left(t_{f}\right) p\left(u\left(f_{f}\right)\right)-\lambda u\left(t_{f}\right)=0
\end{aligned}
$$

which implies $u\left(t_{f}\right)=0$. Since $u\left(t_{f}\right)=1-\lambda e^{\alpha t_{f}}=0$ we must have $\lambda=e^{-\alpha t_{f}}$. The optimal control is $u(t)=1-e^{-\alpha\left(t_{f}-t\right)}$, where t_{f} is determined by the state constraint

$$
\begin{equation*}
x\left(t_{f}\right)=x_{0}-\int_{0}^{t_{f}} u(t) d t=x_{0}-t_{f}-\frac{1}{\alpha}\left(1-e^{-\alpha t_{f}}\right)=0 \tag{1}
\end{equation*}
$$

which is a nonlinear equation in t_{f}. The optimal value function can now be computed

$$
\begin{aligned}
V\left(x, t_{f}\right) & =\int_{0}^{t_{f}}\left(u-u^{2} / 2\right) e^{-\alpha t} d t=0.5 \int_{0}^{t_{f}}\left(1-e^{2 \alpha\left(t-t_{f}\right)}\right) e^{-\alpha t} d t \\
& =\frac{\left(1-e^{-\alpha t_{f}}\right)^{2}}{2 \alpha}
\end{aligned}
$$

where once again the terminal time t_{f} is implicitly defined by equation (1).

