

Tentamen i 5B1872 Optimal Control Saturday March 9 2006 8.00–13.00 Answers and solution sketches

- **1.** (a) $\lambda(T) = \begin{bmatrix} 1\\ 1\\ free\\ 0\\ \vdots\\ 0 \end{bmatrix}$
 - (b) There is no feasible solution, hence $= \infty$
 - $(c) \ J=1$

(d) The optimal control for the unconstrained problem, $u(t) = -\frac{x(t)}{3-2t}$, satisfies the constraint $|u(t)| \le 1$ and is thus also optimal for the constrained problem. Indeed, the closed loop state satisfies $|x(t)| \le 1$.

2. (a) The sequential optimization problem has the form

$$\max \sum_{k=0}^{N-1} u_k \quad \text{subj. to} \quad \begin{cases} x_{k+1} = x_k + \theta(x_k - u_k), \ x_0 \text{ given} \\ 0 \le u_k \le x_k \end{cases}$$

The corresponding dynamic programming recursion is

$$V_k(x) = \max_{0 \le u \le x} \{ u + V_{k+1}(x + \theta(x - u)) \}$$

 $V_N(x) = 0$

(b) We have

$$\begin{split} V_3(x) &= 0 \\ V_2(x) &= \max_{0 \le u \le x} u = x, \\ V_1(x) &= \max_{0 \le u \le x} \{u + x + \theta(x - u)\} \\ &= \max\{(1 + \theta)x, 2x\} = 2x, \\ V_0(x) &= \max_{0 \le u \le x} \{u + 2(x + \theta(x - u))\} \\ &= \max\{(2 + \theta)x, 3x\} = 3x, \\ &\Rightarrow u_0 = x \end{split}$$

Hence it is optimal to spend all the time. Note, the problem becomes more interesting if the time horizon is longer, i.e. when N is larger.

3. (a) Let us consider the problem in (a) and (b) simultaneously. The ARE becomes

$$2ap - p^2 = 0$$

We are generally looking for a postive definite solution. We have

$$p = \begin{cases} 2a, & a > 0\\ 0, & a < 0 \end{cases}$$

The optimal control becomes

$$u = -px = \begin{cases} -2a, & a > 0\\ 0, & a < 0 \end{cases}$$

The closed loop system $\dot{x} = (a - p)x = -|a|x$ is stable in both cases. Note that p only is positive semi-definite when a < 0, which is a case not covered by the result in the course. However, it is obvious that u = 0 is optimal because we only penalize the control and the system converges to zero with u = 0.

(b) The open loop system is unstable when a > 0 and the control u = -2ax stabilizes the system. The open loop system is stable when a < 0 and no control is needed to bring the state to zero. Since the cost function only penalizes the control it is optimal to do nothing.

Note, the case a = 0 is not well defined. The solution $u = -\epsilon x$ stabilizes the system but the corresponding cost is

$$\int_0^\infty \epsilon^2 e^{-2\epsilon t} x_0^2 dt = \frac{\epsilon x_0^2}{2}$$

which becomes smaller the smaller ϵ is. However, the limit when $\epsilon = 0$ is not stabilizing, i.e. u = 0 does not stabilize the system.

4. The optimal control problem has the formulation

$$\max x_2(1) \quad \text{subj. to} \quad \begin{cases} \dot{x}_1(t) = -x_1(t) + u(t), & x_1(0) = 0\\ \dot{x}_2(t) = x_1(t), & x_2(0) = 0\\ 0 \le u \le 1 \end{cases}$$

The Hamiltonian becomes

 $H(x, u, \lambda) = \lambda_1(-x_1 + u) + \lambda_2 x_1$

From the pointwise optimization we get

$$u = \operatorname{argmax}_{0 \le u \le 1} H(x, u, \lambda) = \begin{cases} 1, & \lambda_1 > 0\\ 0, & \lambda_1 < 0 \end{cases}$$

We thus expect a switching control law. The adjoint equation becomes

$$\dot{\lambda}_1 = \lambda_1 - \lambda_2$$
$$\dot{\lambda}_2 = 0$$

with terminal condition determined by

$$\lambda(1) - \nabla \Phi(x(1)) \perp S_f$$

where $\Phi(x) = x_2$ and $S_f = \{x : x_1(1) = 0.5\}$. Hence, we get $\lambda_1(1) = free$ and $\lambda_2(1) = 1$. We can now solve the adjoint system, which gives

$$\lambda_1(t) = 1 + (\lambda_1(0) - 1)e^t$$
$$\lambda_2(t) = 1$$

There can be at most one switch in the control function since $\lambda_1(t)$ is a monotonic function. From the problem it is now clear that the control must have the form

$$u(t) = \begin{cases} 1, & 0 \le t < t_s \\ 0, & t_s < t \le 1 \end{cases}$$

We can determine the switching time from the constraint x(1) = 0.5. We have $x_1(t_s) = 1 - e^{-t_s}$ and

$$x(1) = e^{-(1-t_s)}(1-e^{-t}) = 0.5$$

which gives $t_s = \ln(\frac{2+e}{2})$.

5. The optimal control problem is

$$\max \int_{0}^{t_{f}} e^{-\alpha t} u(t) p(u(t)) dt \quad \text{subj. to} \quad \begin{cases} \dot{x}(t) = -u(t), & x(0) = x_{0} \\ t_{f} \ge 0, x(t_{f}) = 0 \end{cases}$$

The Hamiltonian is $H(t, x, u, \lambda) = e^{-\alpha t} u p(u) - \lambda u$, and the terminal manifold is $S_f(t) = \{0\}$. The adjoint equation is $\dot{\lambda} = -H_x = 0$, which implies $\lambda(t) = const$ (the terminal condition gives no information). The pointwise optimization gives

$$u = \operatorname{argmax}_{u} e^{-\alpha t} u p(u) - \lambda u = \operatorname{argmax}_{u} e^{-\alpha t} u(1 - u/2) - \lambda u = 1 - \lambda e^{\alpha t}$$

where we used that $u \leq 2$ because the cost is zero for u > 2, which obviously cannot be optimal. From PMP we have the condition (along the optimal solution)

$$H(t_f, x(t_f), u(t_f), \lambda(t_f)) = -\sum_{k=1}^p \nu_k \frac{\partial g_k}{\partial t} (t_f, x(t_f)) - \frac{\partial \phi}{\partial t} (t_f, x(t_f)) = 0$$

$$\Leftrightarrow e^{-\alpha t_f} u(t_f) p(u(f_f)) - \lambda u(t_f) = 0$$

which implies $u(t_f) = 0$. Since $u(t_f) = 1 - \lambda e^{\alpha t_f} = 0$ we must have $\lambda = e^{-\alpha t_f}$. The optimal control is $u(t) = 1 - e^{-\alpha(t_f-t)}$, where t_f is determined by the state constraint

$$x(t_f) = x_0 - \int_0^{t_f} u(t)dt = x_0 - t_f - \frac{1}{\alpha}(1 - e^{-\alpha t_f}) = 0$$
(1)

which is a nonlinear equation in t_f . The optimal value function can now be computed

$$V(x,t_f) = \int_0^{t_f} (u - u^2/2)e^{-\alpha t} dt = 0.5 \int_0^{t_f} (1 - e^{2\alpha(t - t_f)})e^{-\alpha t} dt$$
$$= \frac{(1 - e^{-\alpha t_f})^2}{2\alpha}$$

where once again the terminal time t_f is implicitly defined by equation (1).