
Homework 2: 5B1873: Optimal Control Spring 2007

Grading: You may use min(1,
your credit

30
) extra points on the exam.

The homework is due on February 19, 2007 at 17.00

1. Consider the cart and pendulum system in Figure 1. Derive a dynamical equation
for the system using Euler Lagranges equation (see the example in Chapter 5).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10p)
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Figur 1: An inverted pendulum mounted on a cart

2. The dynamics of mobile robots can under some simplifying assumptions be linearized
using feedback. The resulting model becomes

[

ÿ1

ÿ2

]

=

[

u1

u2

]

(1)

where y = (y1, y2) denotes the position of the robot and u = (u1, u2) is the control
signal. We assume that the robot is initially at rest at the origin, i.e. y(0) = ẏ(0) =
(0, 0).

We want to design the control signal such that the robot tracks the circular motion

[

y1(t)
y2(t)

]

=

[

cos(t)
sin(t)

]

on the time interval [0, 8π]. One way to do this is to solve the following optimization
problem

min

∫ 8π

0
[(y1(t) − cos(t))2 + (y2(t) − sin(t))2 + r(u1(t)

2 + u2(t)
2)]dt

1
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subject to the linear dynamics

[

ÿ1

ÿ2

]

=

[

u1

u2

]

(2)

Use Matlab to solve the problem. Choose r such that |uk(t)| ≤ 5 for k = 1, 2 and
such that good tracking is obtained. Plot your solutions y1(t), y2(t) and u(t). Also
plot (y1(t), y2(t)), i.e. y2 as a function of y1. Include the Matlab code in the solution
you hand in. Note that you cannot obtain perfect tracking.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10p)

3. In this example we consider a control problem for the rockett car in Figure 2. The
car starts from rest at z = −1 and should be controlled such that after five seconds
the car is close to be at rest at the origin (or at rest at the origin). If we define the
state to be x1 = z and x2 = ż then the problem is to find a control u : [0, 5] → R

such that the solution to

ẋ = Ax + Bu, x(0) = x0 :=

[

−1
0

]

, A =

[

0 1
0 0

]

, B =

[

0
1

]

satisfies x(5) = 0 or at least x(5) ≈ 0. Four control engineers have suggested the
controllers C1 − C4 below.

(C1) u(t) = −5x1(t) + D

(C2) u(t) = − 1
1+5−t+(5−t)3/3+(5−t)4/12

[

5 − t + (5−t)2

2 1 + (5 − t)2 + (5−t)3

3

]

x(t)+D

(C3) u(t) = −
[

6
(5−t)2

4
5−t

]

x(t) + D

(C4) u(t) = 12
53 (5

2 − t) + D.

where D is a disturbance. You also know that some but not all of these engineers
used optimal control to derive their controller. They have informed that each of
C1 − C4 corresponds to either of O1 − O3. It is possible that two of the controllers
corresponds to the same optimization problem.

(O1) min
∫ 5
0 u(t)2dt s.t. ẋ = Ax + Bu, x(0) = x0, x(5) = 0

(O2) min ‖x(5)‖2 +
∫ 5
0 u(t)2dt s.t. ẋ = Ax + Bu, x(0) = x0

(O3) None of these two optimal control problems.

The get a better understanding of the four controllers a fifth engineer performed the
simulations in Figure 3. The left hand side plots corresponds to the case when D = 0
and the right hand side plots corresponds to D = 0.5. Unfortunately, the engineer
did not tell you which plot corresponds to what controller.

Your problem is to match the controllers C1 − C4 with the plots 1-4 and for each
controller determine which of the optimal control problems O1 − O3 was used for
the design. You must motivate your answer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(10p)
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Figur 2: Control problem: Move the rocket car to rest at z = 0.
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Figur 3: The closed loop response for four different controllers. The left hand side figure
shows the two states for the case with no disturbance. The right hand side figure shows
the response in the case with disturbance.
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4. Let u∗ : [t0, t
∗

f ] → U generate a solution x∗ : [t0, t
∗

f ] → R
n to the boundary value

problem

ẋ = f(x, u), x(0) = x0, x(tf ) ∈ Sf (3)

where Sf = {x ∈ R
n : G(x) = 0} is a smooth manifold. Suppose there exists

V : Rn \ Sf → R of class1 C1 such that

(i) f0(x
∗(t), u∗(t)) + Vx(x∗(t))T f(x∗(t), u∗(t)) = 0, t ∈ [t0, t

∗

f )

(ii) f0(x, u) + Vx(x)T f(x, u) ≥ 0, ∀x ∈ R
n \ Sf , ∀u ∈ U .

(iii) if u : [t0, tf ] → U generates another solution x(·) to the boundary value problem
(3) then

lim
t→tf

V (x(t)) ≤ lim
t→t∗

f

V (x∗(t)) = 0

From (i) − (iii) and (3) we can derive the following relationship

lim
t→tf

∫ t

t0

f0(x(t), u(t))dt − lim
t→t∗

f

∫ t

t0

f0(x
∗(t), u∗(t))dt

≥ V (x(t0))− lim
t→tf

V (x(t))−(V (x∗(t0))− lim
t→t∗

f

V (x∗(t))) = − lim
t→tf

V (x(t)) ≥ 0

(a) Explain each step of the derivation above. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4p)

(b) What conclusion can you draw about the control function u∗(·)?. . . . . . . . . (3p)

(c) Apply the above theory to the case when u∗(t) = −sign(x0), f0(x, u) = 1,
f(x, u) = −x + u, t∗f = V (x0) = ln(1 + sign(x0)x0). Interpret in terms of an
optimal control problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

1This means that V is continuously differentiable everywhere except at points in Sf .


