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1 Control over a finite time-horizon

Consider a particle moving along a 1-dimensional axis

xk+1 = xk + uk, x0 given.

The state x denotes the position of the particle and the control u is the movement
of the particle from one time instance to the next. We will compare open loop
and feedback solutions for this problem with respect to their ability to reduce the
effect of disturbances.

Let us assume that we want to bring the particle to the origin in two steps
while using minimum control energy. This gives rise to the optimization problem

J∗(0, x0) = min
u

u2

0 + u2

1 s.t.

{

xk+1 = xk + uk

x2 = 0

= min u2

0 + u2

1 s.t. x0 + u0 + u1 = 0

= min u2

0 + (x0 + u0)
2 =

1

2
x2

0

and the optimal control sequence becomes

u∗

0 = µ(0, x0) = −
1

2
x0,

u∗

1 = µ(1, x0) = −
1

2
x0.

The notation u∗

k
= µ(k, x0) is used to clarify that the control depends on the time

k and the initial state x0. Such control laws are called open loop control.
We obtain an alternative solution by using dynamic programming. The DynP

algorithm gives

J(2, x) =

{

0, x = 0

∞, x 6= 0

1



Open Loop Control Feedback Control

PSfrag replacements xk+1 = xk + ukxk+1 = xk + uk

µ(k, x0)
µ(k, x)

xkxk

ηkηk

Figure 1: Open loop versus feedback control.

Note that the cost is infinite unless the constraint x = 0 is satisfied. The next
step of the DynP algorithm gives

J(1, x) = min
u

{

u2 + J(1, x + u)
}

= x2

and the minimizing control is u∗ = µ(1, x) = −x. We used that u = −x because
otherwise J(1, x + u) = ∞. The final step of the DynP algorithm gives

J(0, x) = min
u

{

u2 + J(0, x + u)
}

= min
u

{

u2 + (x + u)2
}

=
1

2
x2

and the minimizing control is u∗ = µ(0, x) = −
1

2
x. Hence the optimal control is

u∗

0 = µ(0, x) = −
1

2
x

u∗

1 = µ(1, x) = −x

The notation u∗

k
= µ(k, xk) is used to clarify that the control depends on both

time and the current state. Such control laws are called feedback control.

1.1 Disturbance Sensitivity

Consider the situation in Fig. 1 where the left part illustrates the open loop
situation and the right hand side illustrates the feedback control situation. The
signal ηk denotes a disturbance and we first assume η0 6= 0 and ηk = 0, k ≥ 1.

For the open loop situation we get the situation

x1 = x0 + µ(0, x0) + η0 =
1

2
x0 + η0

x2 = x1 + µ(1, x0) = η0
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We do not reach the origin as desired!
In the closed loop situation we get

x1 = x0 + µ(0, x0) + η0 =
1

2
x0 + η0

x2 = x1 + µ(1, x1) = 0

The feedback compensated for the disturbance. Note however, that if the distur-
bance is persistent, i.e. ηk 6= 0, k ≥ 1, then the position of the particle can still
be disturbed and thus deviate from the desired position at the origin. In order
to avoid such a situation we could consider optimal control over an infinite time
horizon.

1.2 Infinite Horizon Optimal Control

Consider

min
u

∞
∑

k=1

x2

k
+ u2

k
s.t. xk+1 = xk + uk

The cost function forces the state and the control to converge to zero. We obtain
a solution by solving the Bellman equation

J(x) = min
u

{

x2 + u2 + J(x + u)
}

Let us try the form J(x) = px2, where p > 0 in order for J to be positive definite.
This gives

px2 = min
u

{

x2 + u2 + p(x + u)2
}

= min
u

(1 + p)(u +
p

1 + p
x)2 + x2(1 + p −

p2

1 + p
)

= x2(1 + p −
p2

1 + p
)

Hence, the optimal feedback control is

u∗ = µ(x) = −
p

1 + p
x

where p is the positive solution to the Riccati equation

p2 = 1 + p (1)
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Figure 2: Infinite horizon control.

Let us consider the situation in Fig 2. We obtain the solution

xk+1 = xk + µ(xk) + ηk =
1

1 + p
xk + ηk

=
1

1 + p
(xk−1 + µ(xk−1) + ηk−1) + ηk

=
1

(1 + p)2
xk−1 +

1

1 + p
ηk−1) + ηk

= . . . =
1

(1 + p)k+1
xk +

k
∑

l=0

1

(1 + p)k−l
ηl

We see that the influence of the initial condition decays to zero since 1/(1+p) < 1.
We also see that the contribution from old disturbances is reduced as time evolves.
Hence, the infinite time horizon optimal control problem results in a stabilizing
(convergence) feedback controller that also gives robustness to the disturbance.

In summary:

• Feedback solutions have the advantage that the effect of disturbances can
be compensated for.

• Infinite time horizon optimal control gives both convergence and distur-
bance compensation. Note that the convergence to the desired value (zero
in our example) in general is slower than if a finite time horizon optimal
criterion is used for the control design.

• It is usually easier to derive an open loop controller than a feedback con-
troller.
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