MPC Problems

January 31, 2007

Example 1. Consider a model predictive control problem where at each time instance the following optimization problem is solved: $\min _{U_{t}} J\left(x_{t \mid t}, U_{t}\right)$ where

$$
\begin{aligned}
J\left(x_{t \mid t}, U_{t}\right)= & \sum_{k=0}^{1} x_{t+k \mid t}^{T} Q x_{t+k \mid t}+u_{t+k \mid t}^{2} \\
& \text { subject to }\left\{\begin{array}{l}
x_{t+k+1 \mid t}=A x_{t+k \mid t}+B u_{t+k \mid t} \\
-1 \leq C x_{t+k \mid t} \leq 1, k=0,1 \\
x_{t+2 \mid t}=0, \quad-1 \leq u_{t+k \mid t} \leq 1, k=0,1
\end{array}\right.
\end{aligned}
$$

where

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad Q=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \\
& C=\left[\begin{array}{ll}
1 & 1
\end{array}\right]
\end{aligned}
$$

Determine the set of initial conditions for which the closed loop system is stable.
Solution: We use the stability result on MPC in the handout from ETH (Löfberg et. al.). We notice that

1. $f_{0}(x, u)=x^{T} Q x+u^{2}$ is a strictly positive definite function since $f_{0}(0,0)=0$ and

$$
f_{0}(x, u) \geq\left(\|x\|^{2}+u^{2}\right) .
$$

since $Q=I$.
2. $f(x, u)=A x+B u$ satisfies $f(0,0)=0$.
3. The state constraint set $\mathbf{X}=\{x:-1 \leq C x \leq 1\}$ contains the origin.
4. The control constraint set $\mathbf{U}=\{u:-1 \leq u \leq 1\}$ contains the origin.
5. The terminal control constraint is $x_{t+2 \mid t}=0$.

Under these conditions it follows that the region of stability is $\mathbf{X}_{0, \text { feas }}=\{x$: $\min _{U_{t}} J\left(x, U_{t}\right)<\infty$. If the initial condition belongs to $\mathbf{X}_{0, \text { feas }}$ then the MPC algorithm converges to zero. $\mathbf{X}_{0, \text { feas }}$ is the set of states for which the constraints of the optimization problem is satisfied, i.e.

$$
\begin{aligned}
& -1 \leq C x \leq 1 \\
& -1 \leq C A x+C B u_{0} \leq 1 \\
& A^{2} x+A B u_{0}+B u_{1}=0 \\
& -1 \leq u_{k} \leq 1, \quad k=0,1
\end{aligned}
$$

which is equivalent to

$$
\begin{aligned}
& -1 \leq x_{1}+x_{2} \leq 1 \\
& -1 \leq x_{1}+2 x_{2}+u_{0} \leq 1 \\
& x_{1}+2 x_{2}+u_{0}=0 \\
& x_{2}+u_{0}+u_{1}=0 \\
& -1 \leq u_{k} \leq 1, \quad k=0,1
\end{aligned}
$$

We see that the second constraint is redundant. By subtracting the two equality constraints we get

$$
\begin{aligned}
& -1 \leq x_{1}+x_{2} \leq 1 \\
& x_{1}+x_{2}-u_{1}=0 \\
& x_{2}+u_{0}+u_{1}=0 \\
& -1 \leq u_{k} \leq 1, \quad k=0,1
\end{aligned}
$$

The first equality constraint is implied by the first inequality constraint since $-1 \leq u_{1} \leq 1$. It follows that

$$
\mathbf{X}_{0, \text { feas }}=\left\{x:-1 \leq x_{1}+x_{2} \leq 1,-2 \leq x_{2} \leq 2\right\} .
$$

In the the next problem we derive an explicit MPC in the case of a linear cost function over the shortest possible prediction horizon, i.e. $N=1$.

Example 2. Consider a model predictive control problem where at each time instance the following optimization problem is solved: $\min _{U_{t}} J\left(x_{t \mid t}, U_{t}\right)$ where

$$
J\left(x_{t \mid t}, U_{t}\right)=\left|u_{t \mid t}\right| \quad \text { subject to }\left\{\begin{array}{l}
x_{t+1 \mid t}=A x_{t \mid t}+B u_{t \mid t} \\
-1 \leq C x_{t+1 \mid t} \leq 1 \\
-1 \leq u_{t \mid t} \leq 1
\end{array}\right.
$$

where

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right], \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
C & =\left[\begin{array}{ll}
1 & 1
\end{array}\right]
\end{aligned}
$$

Derive the explicit MPC controller.
Solution: The optimization problem becomes

$$
\begin{aligned}
J^{*}(t, x)=\min \left|u_{t \mid t}\right| \text { subject to }\left\{\begin{array}{l}
-1 \leq C A x_{t \mid t}+C B u_{t \mid t} \leq 1 \\
-1 \leq u_{t \mid t} \leq 1
\end{array}\right. \\
\min \left|u_{t \mid t}\right| \text { subject to }\left\{\begin{array}{l}
-1 \leq F x_{t \mid t}+u_{t \mid t} \leq 1 \\
-1 \leq u_{t \mid t} \leq 1
\end{array}\right.
\end{aligned}
$$

where $F=\left[\begin{array}{ll}1 & 2\end{array}\right]$. We see that the optimal feedback control is

$$
u_{t \mid t}^{*}= \begin{cases}1-F x_{t \mid t}, & 1 \leq F x_{t \mid t} \leq 2 \\ 0, & -1 \leq F x_{t \mid t} \leq 1 \\ -1-F x_{t \mid t}, & -2 \leq F x_{t \mid t} \leq-1\end{cases}
$$

the problem is infeasible if $\left|F x_{t \mid t}\right|>2$

