

Exam in 5B1872 Optimal Control March 8, 2007 at 8.00–13.00 Answers and solution sketches

1. The dynamic programing recursion is

$$V(x, k+1) = \min_{u} \left\{ u^2 + V(x+u, k) \right\}$$
$$V(x, 3) = (x-1)^2$$

Simple calculations gives

$$u_0 = \frac{1}{4}(1 - x_0) = \frac{1}{4}, \quad x_1 = \frac{1}{4}$$
$$u_1 = \frac{1}{3}(1 - x_1) = \frac{1}{4}, \quad x_2 = \frac{1}{2}$$
$$u_2 \frac{1}{2}(1 - x_2) = \frac{1}{4}, \quad x_3 = \frac{3}{4}$$

$$\min x(t_f) \quad \text{subj. to} \quad \begin{cases} \dot{x}(t) = v \cos(\theta(t)) + c, & x(0) = 0, \\ \dot{y}(t) = v \sin(\theta(t)), & y(0) = 0, \ y(t_f) = y_f \\ t_f > 0 \end{cases}$$

(b) $H(x, y, \theta, \lambda) = \lambda_1(v \cos(\theta) + c) + \lambda_2 v \sin(\theta)$. Pointwise minimization gives

$$\min(\lambda_1(v\cos(\theta) + c) + \lambda_2 v\sin(\theta)) = \lambda_1 c - v \sqrt{\lambda_1^2 + \lambda_2^2}$$

with optimal direction determined by

$$\begin{bmatrix} \cos(\theta^*) \\ \sin(\theta^*) \end{bmatrix} = -\frac{1}{\sqrt{\lambda_1^2 + \lambda_2^2}} \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}$$

The adjoint equation is defined by

$$\dot{\lambda}_1(t) = 0, \quad \lambda_1(t) = \lambda_1^0$$

 $\dot{\lambda}_2(t) = 0, \quad \lambda_2(t) = \lambda_2^0$

so the direction must be constant.

(c) The boundary conditions for the adjoint variable satisfies

$$\begin{split} \lambda_1(t_f) &= 1\\ \lambda_2(t_f) &= \nu, \ \nu \in R \end{split}$$

Unfortunately, this does not provide sufficient information in order to continue. Instead we consider the terminal condition

$$x(t_f) = (v\cos(\theta^*) + c)t_f = x_f$$
$$y(t_f) = v\sin(\theta^*)t_f = y_f$$

which implies

$$x_f(\theta^*) = \frac{v\cos(\theta^*) + c}{\sin(\theta^*)} y_f$$

We want to minimize $x_f(\theta^*)$ and therefore solve for the stationary point

$$x'_f(\theta^*) = \frac{-v + c\cos(\theta^*)}{\sin^2(\theta^*)} y_f = 0$$

which is the case when

$$\theta^* = \cos^{-1}(-v/c)$$

3. (a) We have $H(x, u, \lambda) = 2\lambda u$. This gives $\tilde{\mu}(x, \lambda) = -\text{sign}(\lambda)$ and thus the HJBE becomes

$$\begin{cases} -V_t = H(x, \tilde{\mu}(x, V_x), V_x) \\ V(T, x) = \phi(x) \end{cases} \Leftrightarrow \begin{cases} -V_t = -2V_x \operatorname{sign}(V_x) \\ V(1, x) = x^2 \end{cases}$$

Hence, alternative (a) is correct.

- (b) The second attempt is using the dynamic programming equation correctly. In the first attempt the two time segments are treated independently, which is a violation of the dynamic programming equation and the principle of optimality.
- 4. The Hamiltonian is

$$H(x, u, \lambda) = u_1^2 + u_2^2 + \lambda_1 u_1 + \lambda_2 u_2$$

Pointwise minimization gives

$$u^* = \mu(\lambda) = \begin{bmatrix} -\lambda_1/2 \\ -\lambda_2/2 \end{bmatrix}$$

The adjoint equation is

$$\begin{bmatrix} \dot{\lambda}_1 \\ \dot{\lambda}_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} \lambda_1(t) \\ \lambda_2(t) \end{bmatrix} = \begin{bmatrix} \lambda_1^0 \\ \lambda_2^0 \end{bmatrix}$$

5B1872

The boundary conditions for the adjoint variable reduces to

$$\lambda(0) = \begin{bmatrix} 1\\ 2_2(0) \end{bmatrix} \nu_1, \qquad \lambda(2) = \begin{bmatrix} -1\\ 2x_2(2) \end{bmatrix} \nu_2$$

where $\nu_1\nu_2 \in \mathbf{R}$. Since $\lambda(t) = \lambda^0$ (constant) we must have $\nu_2 = -\nu_1$. Clearly, this requires that $x_2(0) = x_2(2) = 0$, which gives the control

$$u = \begin{bmatrix} \nu_1 \\ 0 \end{bmatrix}$$

The solution becomes

$$x(t) = \begin{bmatrix} \nu_1 t \\ 0 \end{bmatrix}$$

In order for $x(2) \in S_1$ we must have $\nu_2 = 0.5$.

We get the same solution in problem (b).

- 5. (a) Only $u = -(1 + \sqrt{2})$ gives a closed loop system that converges to zero. This is the optimal solution.
 - (b) The Hamilton-Jacobi-Bellman equation becomes

 $0 = \min_{u} \left\{ x^{T} x + u^{2} + V_{x}(x)^{T} (Ax + Bu) \right\}$

It is easy to see that $V(x) = x^T P x$ is a solution if P solves the ARE

 $A^P + PA + I = PBB^T P$

The optimal control is $u = -B^T P x$. There are many solutions to the ARE but only the positive definite solution gives a stable closed loop system, i.e. only when P > 0 will the closed loop solution converge to zero. We know from the lecture notes that there always exists a positive definite solution to the ARE under the stated conditions.

(c) The ARE $A^T P + PA + I - PBB^T P = 0$ becomes

$$\begin{bmatrix} -p_{12}^2 + 1 & -p_{12}p_{22} + p_{11} \\ -p_{12}p_{22} + p_{11} & 2p_{12} - p_{22}^2 + 1 \end{bmatrix} = 0$$

which implies

$$P_{12} = \pm 1$$

$$P_{22} = P_{11} = \pm \sqrt{1 \pm 2}$$

The positive definite solution to the ARE is

$$P = \begin{bmatrix} \sqrt{3} & 1\\ 1 & \sqrt{3} \end{bmatrix}$$

The optimal state feedback is $u = -R^{-1}B^T P x = -\begin{bmatrix} 1 & \sqrt{3} \end{bmatrix} x$ and the closed loop system matrix becomes

$$A - BB^T P = \begin{bmatrix} 0 & 1\\ -1 & -\sqrt{3} \end{bmatrix}$$

which is a stable matrix. The optimal cost is

$$V(x_0) = x_0^T P x_0 = 2(1 + \sqrt{3})$$