Exam in 5B1873 Optimal Control
 March 8, 2007 at 8.00-13.00
 Answers and solution sketches

1. (a)

$$
\min x\left(t_{f}\right) \text { subj. to } \begin{cases}\dot{x}(t)=v \cos (\theta(t))+c, & x(0)=0, \\ \dot{y}(t)=v \sin (\theta(t)), & y(0)=0, y\left(t_{f}\right)=y_{f} \\ t_{f}>0\end{cases}
$$

(b) $H(x, y, \theta, \lambda)=\lambda_{1}(v \cos (\theta)+c)+\lambda_{2} v \sin (\theta)$. Pointwise minimization gives

$$
\min \left(\lambda_{1}(v \cos (\theta)+c)+\lambda_{2} v \sin (\theta)\right)=\lambda_{1} c-v \sqrt{\lambda_{1}^{2}+\lambda_{2}^{2}}
$$

with optimal direction determined by

$$
\left[\begin{array}{l}
\cos \left(\theta^{*}\right) \\
\sin \left(\theta^{*}\right)
\end{array}\right]=-\frac{1}{\sqrt{\lambda_{1}^{2}+\lambda_{2}^{2}}}\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2}
\end{array}\right]
$$

The adjoint equation is defined by

$$
\begin{array}{ll}
\dot{\lambda}_{1}(t)=0, & \lambda_{1}(t)=\lambda_{1}^{0} \\
\dot{\lambda}_{2}(t)=0, & \lambda_{2}(t)=\lambda_{2}^{0}
\end{array}
$$

so the direction must be constant.
(c) The boundary conditions for the adjoint variable satisfies

$$
\begin{aligned}
& \lambda_{1}\left(t_{f}\right)=1 \\
& \lambda_{2}\left(t_{f}\right)=\nu, \nu \in R
\end{aligned}
$$

Unfortunately, this does not provide sufficient information in order to continue. Instead we consider the terminal condition

$$
\begin{aligned}
x\left(t_{f}\right)=\left(v \cos \left(\theta^{*}\right)+c\right) t_{f} & =x_{f} \\
y\left(t_{f}\right)=v \sin \left(\theta^{*}\right) t_{f} & =y_{f}
\end{aligned}
$$

which implies

$$
x_{f}\left(\theta^{*}\right)=\frac{v \cos \left(\theta^{*}\right)+c}{v \sin \left(\theta^{*}\right)} y_{f}
$$

We want to minimize $x_{f}\left(\theta^{*}\right)$ and therefore solve for the stationary point

$$
x_{f}^{\prime}\left(\theta^{*}\right)=\frac{-v+c \cos \left(\theta^{*}\right)}{v \sin ^{2}\left(\theta^{*}\right)} y_{f}=0
$$

which is the case when

$$
\theta^{*}=\cos ^{-1}(-v / c)
$$

2. (a) We have $H(x, u, \lambda)=2 \lambda u$. This gives $\tilde{\mu}(x, \lambda)=-\operatorname{sign}(\lambda)$ and thus the HJBE becomes

$$
\left\{\begin{array} { l }
{ - V _ { t } = H (x , \tilde { \mu } (x , V _ { x }) , V _ { x }) } \\
{ V (T , x) = \phi (x) }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
-V_{t}=-2 V_{x} \operatorname{sign}\left(V_{x}\right) \\
V(1, x)=x^{2}
\end{array}\right.\right.
$$

Hence, alternative (a) is correct.
(b) The second attempt is using the dynamic programming equation correctly. In the first attempt the two time segments are treated independently, which is a violation of the dynamic programming equation and the principle of optimality.
3. Both problems have the same solution. Here we only give the proof of part (b), which is a bit harder that (a). The Hamiltonian is

$$
H(x, u, \lambda)=u_{1}^{2}+u_{2}^{2}+\lambda_{1} u_{1}+\lambda_{2} u_{2}
$$

Pointwise minimization gives

$$
u^{*}=\mu(\lambda)=\left[\begin{array}{l}
-\lambda_{1} / 2 \\
-\lambda_{2} / 2
\end{array}\right]
$$

The adjoint equation is

$$
\left[\begin{array}{l}
\dot{\lambda}_{1} \\
\dot{\lambda}_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \Rightarrow\left[\begin{array}{l}
\lambda_{1}(t) \\
\lambda_{2}(t)
\end{array}\right]=\left[\begin{array}{l}
\lambda_{1}^{0} \\
\lambda_{2}^{0}
\end{array}\right]
$$

The boundary conditions for the adjoint variable reduces to

$$
\lambda(0)=\left[\begin{array}{c}
1 \\
2_{2}(0)
\end{array}\right] \nu_{1}, \quad \lambda(2)=\left[\begin{array}{c}
-1 \\
2 x_{2}(2)
\end{array}\right] \nu_{2}
$$

where $\nu_{1} \nu_{2} \in \mathbf{R}$. Since $\lambda(t)=\lambda^{0}$ (constant) we must have $\nu_{2}=-\nu_{1}$. Clearly, this requires that $x_{2}(0)=x_{2}(2)=0$, which gives the control

$$
u=\left[\begin{array}{c}
\nu_{1} \\
0
\end{array}\right]
$$

The solution becomes

$$
x(t)=\left[\begin{array}{c}
\nu_{1} t \\
0
\end{array}\right]
$$

In order for $x(2) \in S_{1}$ we must have $\nu_{2}=0.5$.
4. We may use the dynamic programming algorithm with

$$
\begin{aligned}
& V(k, x)=\min _{|u| \leq 1}\{|u|+V(k+1, x+u)\} \\
& V(2, x)=2|x|
\end{aligned}
$$

At $k=1$ we get

$$
V(1, x)=\min _{|u| \leq 1}\{|u|+2|x+u|\}= \begin{cases}1+2|x-1|, & x>1 \\ |x|, & |x| \leq 1 \\ 1+2|x+1|, & x<-1\end{cases}
$$

with corresponding controls

$$
u_{1}^{*}= \begin{cases}-1, & x>1 \\ -x, & |x| \leq 1 \\ 1, & |x|<-1\end{cases}
$$

At $k=0$ we have three cases
(a) If $|x+u| \leq 1$ (possible when $|x| \leq 2$) then

$$
V(0, x)=\min _{|u| \leq 1}\{|u|+|x+u|\}= \begin{cases}1+2|x-1|, & 1<x \leq 2 \\ |x|, & |x| \leq 1 \\ 1+|x+1|, & -2 \leq x<-1\end{cases}
$$

with corresponding controls

$$
u_{0}^{*}= \begin{cases}-1, & 1<x \leq 2 \\ -y, & 0 \leq y \leq x \leq 1 \\ -y, & -1 \leq x \leq y \leq 0 \\ 1, & -2 \leq x<-1\end{cases}
$$

(b) If $x+u>1$ (possible when $x>2$) then

$$
V(0, x)=\min _{|u| \leq 1}\{|u|+1+2|x+u-1|\}=2+2|x-2|
$$

and $u_{0}^{*}=-1$
(c) If $x+u<-1$ (possible when $x<-2$) then

$$
V(0, x)=\min _{|u| \leq 1}\{|u|+1+2|x+u+1|\}=2+2|x+2|
$$

and $u_{0}^{*}=1$.
Hence, one possible explicit MPC is (with $y=x$ above)

$$
u_{t \mid t}=\mu\left(x_{t \mid t}\right)= \begin{cases}-1, & x>1 \\ -x, & -1<x<1 \\ 1, & x<-1\end{cases}
$$

5. (a) Only $u=-(1+\sqrt{2})$ gives a closed loop system that converges to zero. This is the optimal solution.
(b) The Hamilton-Jacobi-Bellman equation becomes

$$
0=\min _{u}\left\{x^{T} x+u^{2}+V_{x}(x)^{T}(A x+B u)\right\}
$$

It is easy to see that $V(x)=x^{T} P x$ is a solution if P solves the ARE

$$
A^{P}+P A+I=P B B^{T} P
$$

The optimal control is $u=-B^{T} P x$. There are many solutions to the ARE but only the positive definite solution gives a stable closed loop system, i.e. only when $P>0$ will the closed loop solution converge to zero. We know from the lecture notes that there always exists a positive definite solution to the ARE under the stated conditions.
(c) The ARE $A^{T} P+P A+I-P B B^{T} P=0$ becomes

$$
\left[\begin{array}{cc}
-p_{12}^{2}+1 & -p_{12} p_{22}+p_{11} \\
-p_{12} p_{22}+p_{11} & 2 p_{12}-p_{22}^{2}+1
\end{array}\right]=0
$$

which implies

$$
\begin{aligned}
& P_{12}= \pm 1 \\
& P_{22}=P_{11}= \pm \sqrt{1 \pm 2}
\end{aligned}
$$

The positive definite solution to the ARE is

$$
P=\left[\begin{array}{cc}
\sqrt{3} & 1 \\
1 & \sqrt{3}
\end{array}\right]
$$

The optimal state feedback is $u=-R^{-1} B^{T} P x=-\left[\begin{array}{cc}1 & \sqrt{3}\end{array}\right] x$ and the closed loop system matrix becomes

$$
A-B B^{T} P=\left[\begin{array}{cc}
0 & 1 \\
-1 & -\sqrt{3}
\end{array}\right]
$$

which is a stable matrix. The optimal cost is

$$
V\left(x_{0}\right)=x_{0}^{T} P x_{0}=2(1+\sqrt{3})
$$

