

KTH Mathematics

SF2812 Applied linear optimization, final exam Tuesday October 23 2007 14.00–19.00 Brief solutions

- 1. (a) From the GAMS output file, the values of "VAR x" suggest $x = (5/3\ 0\ 0\ 13/3\ 4/3)$, the marginal costs for "EQU cons" suggest $y = (1/3\ 0\ 0)^T$, and the marginal costs for "VAR x" suggest $s = (0\ 5/3\ 5/3\ 0\ 0)^T$. We have Ax = b, $A^Ty + s = c$, $x \ge 0$, $s \ge 0$ and $x^Ts = 0$. Hence, the solutions are optimal to the respective problem.
 - (b) Since $s_2 = s_3 = 5/3$, it follows that the optimal solution is unchanged as long as the costs of x_2 or x_3 are not decreased more than 5/3. Hence, the solution is not at all sensitive to changes considered by AF. The computed optimal solution is optimal also considering the fluctuations.
 - (c) Since $y_1 = 1/3$, the optimal value is expected to change with 1/3 per unit change of b_1 .
- (a) Since x(μ) and y(μ) that are solution and Lagrange multipliers to (P_μ) also solve the primal-dual nonlinear equations, we immediately obtain

$$x(\mu) \approx \begin{pmatrix} 0.0008\\ 2.9614\\ 3.0185\\ 1.0006\\ 0.0199\\ 0.0010 \end{pmatrix}, \quad y(\mu) \approx \begin{pmatrix} 0.2502\\ -0.2003\\ 0.7497 \end{pmatrix}.$$

Finally, we may obtain $s(\mu)$ from $s_j(\mu) = \mu/x_j(\mu), j = 1, \dots, 6$, and it follows that

(b) Since we expect the solutions to be in the order of 10^{-3} away from an optimal solution, rounding gives

$$x = \begin{pmatrix} 0 \\ 3 \\ 3 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad y = \begin{pmatrix} \frac{1}{4} \\ -\frac{1}{5} \\ \frac{3}{4} \end{pmatrix}.$$

We may then compute

$$s = c - A^T y = \begin{pmatrix} \frac{13}{10} \\ 0 \\ 0 \\ 0 \\ \frac{1}{20} \\ 1 \end{pmatrix}.$$

We have Ax = b, $A^Ty + s = c$, $x \ge 0$, $s \ge 0$ and $x^Ts = 0$. Hence, the solutions are optimal to the respective problem.

- (c) The computed solution is a basic feasible solution. In addition, since strict complementarity holds, the solution is unique. Consequently, the simplex method would compute the same solution.
- **3.** (See the course material.)
- 4. (a) For a fix vector $u \in \mathbb{R}^n$, Lagrangian relaxation of the first group of constraints gives

$$\begin{array}{ll} \text{minimize} & \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij} - \sum_{j=1}^{n} f_j z_j - \sum_{i=1}^{n} u_i \left(\sum_{j=1}^{n} x_{ij} - 1 \right) \\ \text{subject to} & \sum_{i=1}^{n} a_i x_{ij} \ge b_j z_j, \quad j = 1, \dots, n, \\ & x_{ij} \in \{0, 1\}, \ z_j \in \{0, 1\}, \quad i = 1, \dots, n, \ j = 1, \dots, n, \end{array}$$

This problem decomposes into one problem for each j as

$$\begin{array}{ll} \text{minimize} & \sum_{\substack{i=1\\n}}^{n} (c_{ij} - u_i) x_{ij} - f_j z_j \\ \text{subject to} & \sum_{\substack{i=1\\n}}^{n} a_i x_{ij} \geq b_j z_j, \\ & x_{ij} \in \{0,1\}, \ z_j \in \{0,1\}, \quad i = 1, \dots, n, \end{array}$$

for j = 1, ..., n. For each j, we may solve two problem by equating $z_j = 0$ and $z_j = 1$ respectively. For $z_j = 0$ we obtain $x_{ij} = 0$ or $x_{ij} = 1$ depending on whether $c_{ij} - u_i$ is positive or negative. For $z_j = 1$ we obtain a "knapsack-like" problem in the x_{ij} -variables.

(b) For a fix nonnegative vector $v \in \mathbb{R}^m$, Lagrangian relaxation of the second group of constraints gives

$$\begin{array}{ll} \text{minimize} & \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij} - \sum_{j=1}^{n} f_j z_j - \sum_{j=1}^{n} v_j \left(\sum_{i=1}^{n} a_i x_{ij} - b_j z_j \right) \\ \text{subject to} & \sum_{j=1}^{n} x_{ij} = 1, \quad i = 1, \dots, n, \\ & x_{ij} \in \{0, 1\}, \ z_j \in \{0, 1\}, \quad i = 1, \dots, n, \ j = 1, \dots, n \end{array}$$

This problem separates into two separate problems in the x_{ij} -variables and the z_j -variables respectively. The problem in the x_{ij} -variables decomposes into trivial problems for each *i* according to

minimize
$$\sum_{j=1}^{n} (c_{ij} - a_i v_j) x_{ij}$$

subject to
$$\sum_{j=1}^{n} x_{ij} = 1,$$
$$x_{ij} \in \{0, 1\}, \quad j = 1, \dots, n,$$

for $i = 1, \ldots, n$. These can be solved directly by noting which x_{ij} -variable that has the smallest coefficient in the objective function. Similarly, the problem in the z_j -variables decomposes into trivial problems for each j according to

minimize
$$(b_j v_j - f_j) z_j$$

subject to $z_j \in \{0, 1\},$

for j = 1, ..., n. Here, $z_j = 0$ or $z_j = 1$ depending on whether $b_j v_j - f_j$ is positive or negative.

- (c) The second relaxation gives a relaxed problem with integer optimal solutions even if the integrality requirement is relaxed. Hence, the corresponding dual underestimate become identical with the one obtained from an LP-relaxation. The first relaxation gives a more complicated relaxed problem, where the integrality requirement is essential, in general. Hence, one would here expect the underestimate to be better than what the LP-relaxation would give. (We know that it is always at least as good.)
- 5. The suggested initial extreme points $v_1 = (1 \ 0 \ 0 \ 1)^T$ and $v_2 = (-1 \ 0 \ 0 \ 1)^T$ give the initial basis matrix

$$B = \begin{pmatrix} 8 & 2 \\ 1 & 1 \end{pmatrix}.$$

The right-hand side in the master problem is $b = (6 \ 1)^T$. Hence, the basic variables are given by

$\begin{pmatrix} \alpha_1 \end{pmatrix}_{-}$	(8	$2)^{-1}$	$(6)_{-}$	$\left(\frac{2}{3}\right)$
$\left(\alpha_2 \right)^{-}$	(1	1)	$\begin{pmatrix} 1 \end{pmatrix}^{-}$	$\left(\frac{1}{3}\right)$

The cost of the basic variables are given by $(c^Tv_1 \ c^Tv_2) = (10 \ -4)$. Consequently, the simplex multipliers are given by

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 8 & 1 \\ 2 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 10 \\ -4 \end{pmatrix} = \begin{pmatrix} \frac{7}{3} \\ -\frac{26}{3} \end{pmatrix}.$$

By forming $c - y_1 A = (0 \ 4/3 \ -13/3 \ -26/3)$ we obtain the subproblem

$$\begin{array}{rl} \frac{29}{3} + \frac{1}{3} & \text{minimize} & 4x_2 - 13x_3 - 26x_4 \\ & \text{subject to} & -1 \le x_1 + x_2 \le 1, \\ & -1 \le x_1 - x_2 \le 1, \\ & -1 \le x_3 + x_4 \le 1, \\ & -1 \le x_3 - x_4 \le 1. \end{array}$$

The resulting optimal solution gives a new extreme point $v_3 = (0 - 1 \ 0 \ 1)^T$ with reduced cost -4/3. The corresponding column in the master problem is $(3 \ 1)^T$, and we obtain

$$p_B = -B^{-1} \begin{pmatrix} 3\\1 \end{pmatrix} = -\begin{pmatrix} \frac{1}{6}\\ \frac{5}{6} \end{pmatrix}.$$

By considering the step from α_B along p_B an requiring nonnegativity, we obtain the maximum steplength as 2/5, and α_2 leaves the basis. Hence, α_3 replaces α_2 as basic variable.

The basic variables are now given by

 $\begin{pmatrix} \alpha_1 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} 8 & 3 \\ 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 6 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{3}{5} \\ \frac{2}{5} \end{pmatrix}.$

The cost of the basic variables are given by $(c^Tv_1 \ c^Tv_2) = (10 \ -3)$. Consequently, the simplex multipliers are given by

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 8 & 1 \\ 3 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 10 \\ -3 \end{pmatrix} = \begin{pmatrix} \frac{13}{5} \\ -\frac{54}{5} \end{pmatrix}.$$

By forming $c - y_1 A = (-4/5 \ 4/5 \ -27/5 \ -10)$ we obtain the subproblem

$$\begin{array}{rl} \frac{54}{5} + \frac{1}{5} & \text{minimize} & -4x_1 + 4x_2 - 27x_3 - 50x_4\\ & \text{subject to} & -1 \leq x_1 + x_2 \leq 1,\\ & -1 \leq x_1 - x_2 \leq 1,\\ & -1 \leq x_3 + x_4 \leq 1,\\ & -1 \leq x_3 - x_4 \leq 1. \end{array}$$

The resulting optimal solutions are v_1 and v_3 , which both give reduced cost 0. Hence, we have found an optimal solution to the original problem. The solution is given by

$$v_1\alpha_1 + v_3\alpha_3 = \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} \frac{3}{5} + \begin{pmatrix} 0\\-1\\0\\1 \end{pmatrix} \frac{2}{5} = \begin{pmatrix} \frac{3}{5}\\-\frac{2}{5}\\0\\1 \end{pmatrix}.$$