ктн Mathematics

SF2812 Applied linear optimization, final exam Tuesday October 232007 14.00-19.00 Brief solutions

1. (a) From the GAMS output file, the values of "VAR x" suggest $x=(5 / 30013 / 34 / 3)$, the marginal costs for "EQU cons" suggest $y=\left(\begin{array}{ll}1 / 3 & 0\end{array}\right)^{T}$, and the marginal costs for "VAR x" suggest $s=(05 / 35 / 300)^{T}$. We have $A x=b, A^{T} y+s=c$ $x \geq 0, s \geq 0$ and $x^{T} s=0$. Hence, the solutions are optimal to the respective problem.
(b) Since $s_{2}=s_{3}=5 / 3$, it follows that the optimal solution is unchanged as long as the costs of x_{2} or x_{3} are not decreased more than $5 / 3$. Hence, the solution is not the costs of x_{2} or x_{3} are not decreased more than $5 / 3$. Hence, the solution is not
at all sensitive to changes considered by AF. The computed optimal solution is optimal also considering the fluctuations.
(c) Since $y_{1}=1 / 3$, the optimal value is expected to change with $1 / 3$ per unit change of b_{1}.
2. (a) Since $x(\mu)$ and $y(\mu)$ that are solution and Lagrange multipliers to $\left(P_{\mu}\right)$ also solve the primal-dual nonlinear equations, we immediately obtain

$$
x(\mu) \approx\left(\begin{array}{l}
0.0008 \\
2.9614 \\
3.0185 \\
1.0006 \\
0.0199 \\
0.0010
\end{array}\right), \quad y(\mu) \approx\left(\begin{array}{r}
0.2502 \\
-0.2003 \\
0.7497
\end{array}\right) .
$$

Finally, we may obtain $s(\mu)$ from $s_{j}(\mu)=\mu / x_{j}(\mu), j=1, \ldots, 6$, and it follows that

$$
s(\mu) \approx\left(\begin{array}{l}
1.2992 \\
0.0003 \\
0.0003 \\
0.0010 \\
0.0503 \\
1.0000
\end{array}\right)
$$

b) Since we expect the solutions to be in the order of 10^{-3} away from an optimal solution, rounding gives

$$
x=\left(\begin{array}{l}
0 \\
3 \\
3 \\
1 \\
0 \\
0
\end{array}\right), \quad y=\left(\begin{array}{r}
\frac{1}{4} \\
-\frac{1}{5} \\
\frac{3}{4}
\end{array}\right)
$$

We may then compute

$$
s=c-A^{T} y=\left(\begin{array}{c}
\frac{13}{10} \\
0 \\
0 \\
0 \\
\frac{1}{20} \\
1
\end{array}\right) \text {. }
$$

We have $A x=b, A^{T} y+s=c, x \geq 0, s \geq 0$ and $x^{T} s=0$. Hence, the solutions are optimal to the respective problem.
(c) The computed solution is a basic feasible solution. In addition, since strict complementarity holds, the solution is unique. Consequently, the simplex method would compute the same solution
3. (See the course material.)
4. (a) For a fix vector $u \in \mathbb{R}^{n}$, Lagrangian relaxation of the first group of constraints gives

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j}-\sum_{j=1}^{n} f_{j} z_{j}-\sum_{i=1}^{n} u_{i}\left(\sum_{j=1}^{n} x_{i j}-1\right) \\
\text { subject to } & \sum_{i=1}^{n} a_{i} x_{i j} \geq b_{j} z_{j}, \quad j=1, \ldots, n, \\
& x_{i j} \in\{0,1\}, z_{j} \in\{0,1\}, \quad i=1, \ldots, n, j=1, \ldots, n,
\end{array}
$$

This problem decomposes into one problem for each j as
minimize

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(c_{i j}-u_{i}\right) x_{i j}-f_{j} z_{j} \\
& \sum_{i=1}^{n} a_{i} x_{i j} \geq b_{j} z_{j}, \\
& x_{i j} \in\{0,1\}, \quad z_{j} \in\{0,1\}, \quad i=1, \ldots, n
\end{aligned}
$$

subject to
for $j=1, \ldots, n$. For each j, we may solve two problem by equating $z_{j}=0$ and $z_{j}=1$ respectively. For $z_{j}=0$ we obtain $x_{i j}=0$ or $x_{i j}=1$ depending on
whether $c_{i j}-u_{i}$ is positive or negative. For $z_{j}=1$ we obtain a "knapsack-like" problem in the $x_{i j}$-variables.
(b) For a fix nonnegative vector $v \in \mathbb{R}^{m}$, Lagrangian relaxation of the second group of constraints gives

$$
\begin{array}{ll}
\text { minimize } & \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j}-\sum_{j=1}^{n} f_{j} z_{j}-\sum_{j=1}^{n} v_{j}\left(\sum_{i=1}^{n} a_{i} x_{i j}-b_{j} z_{j}\right) \\
\text { subject to } & \sum_{j=1}^{n} x_{i j}=1, \quad i=1, \ldots, n, \\
& x_{i j} \in\{0,1\}, \quad z_{j} \in\{0,1\}, \quad i=1, \ldots, n, j=1, \ldots, n,
\end{array}
$$

This problem separates into two separate problems in the $x_{i j}$-variables and the z_{j}-variables respectively. The problem in the $x_{i j}$-variables decomposes into trivial problems for each i according to

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{j=1}^{n}\left(c_{i j}-a_{i} v_{j}\right) x_{i j} \\
\text { subject to } & \sum_{j=1}^{n} x_{i j}=1, \\
& x_{i j} \in\{0,1\}, \quad j=1, \ldots, n,
\end{array}
$$

for $i=1, \ldots, n$. These can be solved directly by noting which $x_{i j}$-variable that has the smallest coefficient in the objective function. Similarly, the problem in the z_{j}-variables decomposes into trivial problems for each j according to

$$
\operatorname{minimize} \quad\left(b_{j} v_{j}-f_{j}\right) z_{j}
$$

$$
\text { subject to } z_{j} \in\{0,1\} \text {, }
$$

for $j=1, \ldots, n$. Here, $z_{j}=0$ or $z_{j}=1$ depending on whether $b_{j} v_{j}-f_{j}$ is positive or negative.
(c) The second relaxation gives a relaxed problem with integer optimal solutions even if the integrality requirement is relaxed. Hence, the corresponding dual underestimate become identical with the one obtained from an LP-relaxation The first relaxation gives a more complicated relaxed problem, where the inte grality requirement is essential, in general. Hence, one would here expect the underestimate to be better than what the LP-relaxation would give. (We know that it is always at least as good.)
5. The suggested initial extreme points $v_{1}=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)^{T}$ and $v_{2}=\left(\begin{array}{lll}-1 & 0 & 0\end{array}\right)^{T}$ give the initial basis matrix

$$
B=\left(\begin{array}{ll}
8 & 2 \\
1 & 1
\end{array}\right)
$$

The right-hand side in the master problem is $b=(61)^{T}$. Hence, the basic variables are given by

$$
\binom{\alpha_{1}}{\alpha_{2}}=\left(\begin{array}{cc}
8 & 2 \\
1 & 1
\end{array}\right)^{-1}\binom{6}{1}=\binom{\frac{2}{3}}{\frac{1}{3}} .
$$

The cost of the basic variables are given by $\left(c^{T} v_{1} c^{T} v_{2}\right)=(10-4)$. Consequently, the simplex multipliers are given by

$$
\binom{y_{1}}{y_{2}}=\left(\begin{array}{ll}
8 & 1 \\
2 & 1
\end{array}\right)^{-1}\binom{10}{-4}=\binom{\frac{7}{3}}{-\frac{26}{3}} .
$$

By forming $c-y_{1} A=(04 / 3-13 / 3-26 / 3)$ we obtain the subproblem

$$
\begin{array}{ccl}
\frac{26}{3}+\frac{1}{3} & \text { minimize } & 4 x_{2}-13 x_{3}-26 x_{4} \\
& \text { subject to } & -1 \leq x_{1}+x_{2} \leq 1, \\
& -1 \leq x_{1}-x_{2} \leq 1, \\
& -1 \leq x_{3}+x_{4} \leq 1, \\
& -1 \leq x_{3}-x_{4} \leq 1 .
\end{array}
$$

The resulting optimal solution gives a new extreme point $v_{3}=\left(\begin{array}{llll}0 & -1 & 0 & 1\end{array}\right)^{T}$ with reduced cost $-4 / 3$. The corresponding column in the master problem is $(31)^{T}$, and we obtain

$$
p_{B}=-B^{-1}\binom{3}{1}=-\binom{\frac{1}{6}}{\frac{5}{6}}
$$

By considering the step from α_{B} along p_{B} an requiring nonnegativity, we obtain the maximum steplength as $2 / 5$, and α_{2} leaves the basis. Hence, α_{3} replaces α_{2} as basic variable.

The basic variables are now given by

$$
\binom{\alpha_{1}}{\alpha_{3}}=\left(\begin{array}{ll}
8 & 3 \\
1 & 1
\end{array}\right)^{-1}\binom{6}{1}=\left(\begin{array}{c}
\frac{3}{5} \\
2 \\
5
\end{array}\right) .
$$

The cost of the basic variables are given by $\left(c^{T} v_{1} c^{T} v_{2}\right)=(10-3)$. Consequently the simplex multipliers are given by

$$
\binom{y_{1}}{y_{2}}=\left(\begin{array}{ll}
8 & 1 \\
3 & 1
\end{array}\right)^{-1}\binom{10}{-3}=\binom{\frac{13}{5}}{-\frac{54}{5}} .
$$

By forming $c-y_{1} A=(-4 / 54 / 5-27 / 5-10)$ we obtain the subproblem

$$
\begin{array}{lll}
\frac{54}{5}+\frac{1}{5} & \text { minimize } & -4 x_{1}+4 x_{2}-27 x_{3}-50 x_{4} \\
& \text { subject to } & -1 \leq x_{1}+x_{2} \leq 1, \\
& -1 \leq x_{1}-x_{2} \leq 1, \\
& -1 \leq x_{3}+x_{4} \leq 1, \\
& -1 \leq x_{3}-x_{4} \leq 1 .
\end{array}
$$

The resulting optimal solutions are v_{1} and v_{3}, which both give reduced cost 0 . Hence we have found an optimal solution to the original problem. The solution is given by

$$
v_{1} \alpha_{1}+v_{3} \alpha_{3}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right) \frac{3}{5}+\left(\begin{array}{r}
0 \\
-1 \\
0 \\
1
\end{array}\right) \frac{2}{5}=\left(\begin{array}{r}
\frac{3}{5} \\
-\frac{2}{5} \\
0 \\
1
\end{array}\right)
$$

