

ктH Mathematics

SF2812 Applied linear optimization, final exam
Wednesday January 162008 14.00-19.00 Brief solutions

1. (a) The primal-dual nonlinear equation is given by

$$
\begin{aligned}
A x & =b, \\
A^{T} y+s & =c, \\
X S e & =\sigma \mu e,
\end{aligned}
$$

where $e=\left(\begin{array}{lll}1 & 1 & \ldots\end{array}\right)^{T}$ and $\mu=\left(x^{T} s\right) / n=1.54$ for some $\sigma \in[0,1]$. With $X=\operatorname{diag}(x)$ and $S=\operatorname{diag}(s)$ the linear system of equations may be written

$$
\left(\begin{array}{ccc}
A & 0 & 0 \\
0 & A^{T} & I \\
S & 0 & X
\end{array}\right)\left(\begin{array}{c}
\Delta x \\
\Delta y \\
\Delta s
\end{array}\right)=-\left(\begin{array}{c}
A x-b \\
A^{T} y+s-c \\
X S e-\sigma \mu e
\end{array}\right) .
$$

We may for example let $\sigma=0.1$. Insertion of numerical values gives
$\left(\begin{array}{rrrrrrrrrrrrr}2 & 4 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 3 & 1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 & 1 & 3 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 4 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 1 \\ 1.7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0.1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 8 & 0 & 0 \\ 0 & 0 & 0 & 0.1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4\end{array}\right)\left(\begin{array}{l}\Delta x_{1} \\ \Delta x_{2} \\ \Delta x_{3} \\ \Delta x_{4} \\ \Delta x_{5} \\ \Delta y_{1} \\ \Delta y_{2} \\ \Delta y_{3} \\ \Delta s_{1} \\ \Delta s_{2} \\ \Delta s_{3} \\ \Delta s_{4} \\ \Delta s_{5}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -1.546 \\ -0.846 \\ -0.646 \\ -0.046 \\ -3.846\end{array}\right)$
(b) If we let $\alpha_{\max }$ be the maximum value of α for which $x+\alpha \Delta x \geq 0$ and $s+\alpha \Delta s \geq 0$ we must have $\alpha<\alpha_{\max }$. Ideally we would want steplength one. One (crude) choice would be $\alpha=\min \left\{1,0.99 \alpha_{\max }\right\}$, and then let

$$
x=x+\alpha \Delta x, \quad y=y+\alpha \Delta y, \quad s=s+\alpha \Delta s .
$$

2. (a) We have x^{*} nonnegative with $A x^{*}=b$ and

$$
A_{+}=\left(\begin{array}{rr}
4 & -1 \\
1 & 0 \\
1 & 0
\end{array}\right)
$$

We see that A_{+}has a leading nonsingular submatrix of dimension 2×2. Hence, A_{+}has full column rank. It follows that x^{*} is a basic feasible solution.
(b) First (i). Let $x_{B}=\left(\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right)^{T}$. Then $x_{B}=\left(\begin{array}{lll}0 & 1 & 2\end{array}\right)^{T}$. Compute y from $B^{T} y=c_{B}$ and let $s_{N}=c_{N}-N^{T} y$. We obtain

$$
\left(\begin{array}{rrr}
2 & 1 & 3 \\
4 & 1 & 1 \\
-1 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{r}
8 \\
7 \\
-1
\end{array}\right), \quad \text { which gives } y=\left(\begin{array}{c}
1 \\
\frac{3}{2} \\
\frac{3}{2}
\end{array}\right),\binom{s_{4}}{s_{5}}=\binom{\frac{1}{2}}{\frac{3}{2}} .
$$

Hence, since $s_{N} \geq 0$, the simplex method shows that x^{*} is optimal. Now (ii). Let $x_{B}=\left(\begin{array}{lll}x_{2} & x_{3} & x_{4}\end{array}\right)^{T}$. Then $x_{B}=\left(\begin{array}{lll}1 & 2 & 0\end{array}\right)^{T}$. Compute y from
$B^{T} y=c_{B}$ and $B^{T} y=c_{B}$ and let $s_{N}=c_{N}-N^{T} y$. We obtain

$$
\left(\begin{array}{rrr}
4 & 1 & 1 \\
-1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{r}
7 \\
-1 \\
-1
\end{array}\right), \quad \text { which gives } y=\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right),\binom{s_{1}}{s_{4}}=\binom{-1}{2} .
$$

Since $s_{1}<0, x_{1}$ will enter the basis. We obtain the change in the basic variables from $B p_{B}=-A_{1}$, i.e.,

$$
\left(\begin{array}{rrr}
4 & -1 & 0 \\
1 & 0 & -1 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
p_{2} \\
p_{3} \\
p_{4}
\end{array}\right)=\left(\begin{array}{l}
-2 \\
-1 \\
-3
\end{array}\right), \quad \text { which gives } \quad\left(\begin{array}{l}
p_{2} \\
p_{3} \\
p_{4}
\end{array}\right)=\left(\begin{array}{r}
-3 \\
-10 \\
-2
\end{array}\right) .
$$

Since $x_{4}=0$, it follows that x_{4} leaves the basis, and the new basic variables are $x_{B}=\left(x_{1} x_{2} x_{3}\right)^{T}$, which has been covered in (i).
Finally (iii). Let $x_{B}=\left(\begin{array}{lll}x_{2} & x_{3} & x_{5}\end{array}\right)^{T}$. Then $x_{B}=\left(\begin{array}{ll}1 & 2\end{array}\right)^{T}$. Compute y from $B^{T} y=c_{B}$ and let $s_{N}=c_{N}-N^{T} y$. We obtain

$$
\left(\begin{array}{rrr}
4 & 1 & 1 \\
-1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{r}
7 \\
-1 \\
0
\end{array}\right), \quad \text { which gives } y=\left(\begin{array}{l}
1 \\
3 \\
0
\end{array}\right),\binom{s_{1}}{s_{4}}=\binom{3}{2} .
$$

Hence, since $s_{N} \geq 0$, the simplex method shows that x^{*} is optimal.
Consequently, AF was right in that x^{*} is optimal. By the simplex method, he could have obtained the final basis as $x_{B}=\left(x_{1} x_{2} x_{3}\right)^{T}$ or $x_{B}=\left(x_{2} x_{3} x_{5}\right)^{T}$.
3. (a) For $u=1$, the resulting Lagrangian relaxed problem becomes

$$
\begin{array}{lll}
\left(I P_{1}\right) \quad \text { minimize } & -2 x_{1}-1 x_{2}-3 x_{3} \\
& \text { subject to } & -x_{1}-2 x_{2}-3 x_{3} \geq-3, \\
& x_{j} \in\{0,1\}, \quad j=1, \ldots, n .
\end{array}
$$

By enumeration, we find two optimal solutions, $x(1)=\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)^{T}$ and $x(1)=$ (0001$)^{T}$.
(b) If $x(1)$ is an optimal solution to the Lagrangian relaxed problem for $u=1$, a subgradient is given by $3 x_{1}(1)+6 x_{2}(1)+7 x_{3}(1)-8$. Hence, $x(1)=\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)^{T}$ gives a subgradient $s_{1}=1$ and $x(1)=(001)^{T}$ gives a subgradient $s_{2}=-1$.
(c) Since $0=1 / 2 s_{1}+1 / 2 s_{2}$, the zero vector is a subgradient to $\varphi(u)$ at $u=1$. Hence, $u=1$ is an optimal solution to the dual problem.
4. (See the course material.)
5. The suggested initial extreme points $v_{1}=\left(\begin{array}{llll}-1 & 1 & -1 & 1\end{array}\right)^{T}$ and $v_{2}=\left(\begin{array}{llll}-1 & 1 & 1 & -1\end{array}\right)^{T}$ give the initial basis matrix

$$
B=\left(\begin{array}{rr}
-1 & 7 \\
1 & 1
\end{array}\right)
$$

The right-hand side in the master problem is $b=\left(\begin{array}{ll}1 & 1\end{array}\right)^{T}$. Hence, the basic variables are given by

$$
\binom{\alpha_{1}}{\alpha_{2}}=\left(\begin{array}{rr}
-1 & 7 \\
1 & 1
\end{array}\right)^{-1}\binom{1}{1}=\binom{\frac{3}{4}}{\frac{1}{4}}
$$

The cost of the basic variables are given by $\left(c^{T} v_{1} c^{T} v_{2}\right)=(-2-2)$. Consequently, the simplex multipliers are given by

$$
\binom{y_{1}}{y_{2}}=\left(\begin{array}{rr}
-1 & 1 \\
7 & 1
\end{array}\right)^{-1}\binom{-2}{-2}=\binom{0}{-2}
$$

By forming $c^{T}-y_{1} A=\left(\begin{array}{lll}1 & -1 & 1\end{array}\right)$ we obtain the subproblem
$2+$ minimize $x_{1}-x_{2}+x_{3}-x_{4}$
subject to $-1 \leq x_{j} \leq 1, j=1, \ldots, 4$.
The resulting optimal solution gives a new extreme point $v_{3}=\left(\begin{array}{lll}-1 & -1 & 1\end{array}\right)^{T}$ with reduced cost -2 . The corresponding column in the master problem is $(51)^{T}$, and we obtain

$$
p_{B}=-B^{-1}\binom{5}{1}=-\binom{-\frac{5}{3}}{\frac{2}{3}} .
$$

By considering the step from α_{B} along p_{B} and requiring nonnegativity, we obtain the maximum steplength as $3 / 8$, and α_{2} leaves the basis. Hence, α_{3} replaces α_{2} as basic variable.
The basic variables are now given by

$$
\binom{\alpha_{1}}{\alpha_{3}}=\left(\begin{array}{rr}
-1 & 5 \\
1 & 1
\end{array}\right)^{-1}\binom{1}{1}=\binom{\frac{2}{3}}{\frac{1}{3}}
$$

The cost of the basic variables are given by $\left(c^{T} v_{1} c^{T} v_{3}\right)=(-2-4)$. Consequently, the simplex multipliers are given by

$$
\binom{y_{1}}{y_{2}}=\left(\begin{array}{rr}
-1 & 1 \\
5 & 1
\end{array}\right)^{-1}\binom{-2}{-4}=\binom{-\frac{1}{3}}{-\frac{7}{3}} .
$$

By forming $c^{T}-y_{1} A=\left(\begin{array}{lll}2 / 3 & -1 / 3 & 4 / 3\end{array}\right)$ we obtain the subproblem

$$
\begin{array}{lll}
\frac{7}{3}+ & \text { minimize } & \frac{2}{3} x_{1}-\frac{1}{3} x_{2}+\frac{4}{3} x_{3} \\
& \text { subject to } & -1 \leq x_{j} \leq 1, j=1, \ldots, 4 .
\end{array}
$$

The resulting optimal solutions are v_{1} and v_{3}, which both give reduced cost 0 . Hence we have found an optimal solution to the original problem. The solution is given by

$$
v_{1} \alpha_{1}+v_{3} \alpha_{3}=\left(\begin{array}{r}
-1 \\
1 \\
-1 \\
1
\end{array}\right) \frac{2}{3}+\left(\begin{array}{r}
-1 \\
1 \\
-1 \\
-1
\end{array}\right) \frac{3}{5}=\left(\begin{array}{r}
-1 \\
1 \\
-1 \\
\frac{1}{3}
\end{array}\right)
$$

Note: This particular problem may be simplified further, since it is a continuous knapsack problem. By noting that in the subproblem, if we denote the optimal solution of the subproblem by $x\left(y_{1}\right)$, we obtain $x_{i}\left(y_{1}\right)=-1$ if $c_{i}-y a_{i}<0$ and $x_{i}\left(y_{1}\right)=-1$ if $c_{i}-y a_{i}>0$. Hence, if we order the ratios c_{i} / a_{i} in decreasing order, we obtain $c_{3} / a_{3}=1, c_{2} / a_{2}=1 / 2, c_{4} / a_{4}=-1 / 3, c_{1} / a_{1}=-1$. Thus, we may start with $y_{1}<-1$ for which $x\left(y_{1}\right)$ gives the maximum value of the constraint $-x_{1}+2 x_{2}+x_{3}-3 x_{4}-1$ in the interval $1-\leq x_{i} \leq 1, i=1, \ldots, 4$. We may then increase y_{1} until we reach one point among $-1,-1 / 3,1 / 2$ and 1 at which passing this point with y_{1} makes the constraint $-x_{1}\left(y_{1}\right)+2 x_{2}\left(y_{1}\right)+x_{3}\left(y_{1}\right)-3 x_{4}\left(y_{1}\right)-1$ switch from being positive to being negative. This is $y_{1}=-1 / 3$ in this case, as was concluded in the final master problem. Then the variable that switches at this point may be assigned a value in the interval that makes the constraint satisfied Rather than solve a sequence of master problems, we can increase y_{1} over the finite set of points, and need then only solve one subproblem to get the appropriate linear combination.

