

KTH Mathematic

SF2812 Applied linear optimization, final exam Wednesday January 16 2008 14.00–19.00 Brief solutions

1. (a) The primal-dual nonlinear equation is given by

Ax = b, $A^{T}y + s = c,$ $XSe = \sigma\mu e,$

where $e = (1 \ 1 \ \dots 1)^T$ and $\mu = (x^T s)/n = 1.54$ for some $\sigma \in [0, 1]$. With X = diag(x) and S = diag(s) the linear system of equations may be written

$$\begin{pmatrix} A & 0 & 0 \\ 0 & A^T & I \\ S & 0 & X \end{pmatrix} \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta s \end{pmatrix} = - \begin{pmatrix} Ax - b \\ A^Ty + s - c \\ XSe - \sigma \mu e \end{pmatrix}$$

We may for example let $\sigma = 0.1$. Insertion of numerical values gives

(2	4	-1	0	0	0	0	0	0	0	0	0	0)	$\left(\Delta x_1 \right)$		(0)	۱
	1	1	0	-1	0	0	0	0	0	0	0	0	0	Δx_2		0	l
	3	1	0	0	$^{-1}$	0	0	0	0	0	0	0	0	Δx_3		0	
	0	0	0	0	0	2	1	3	1	0	0	0	0	Δx_4		0	
	0	0	0	0	0	4	1	1	0	1	0	0	0	Δx_5		0	
	0	0	0	0	0	-1	0	0	0	0	1	0	0	Δy_1		0	
	0	0	0	0	0	0	-1	0	0	0	0	1	0	Δy_2	=	0	
	0	0	0	0	0	0	0	-1	0	0	0	0	1	Δy_3		0	
	1.7	0	0	0	0	0	0	0	1	0	0	0	0	Δs_1		-1.546	
	0	0.5	0	0	0	0	0	0	0	2	0	0	0	Δs_2		-0.846	
	0	0	0.1	0	0	0	0	0	0	0	8	0	0	Δs_3		-0.646	l
	0	0	0	0.1	0	0	0	0	0	0	0	2	0	Δs_4		-0.046	
ĺ	0	0	0	0	1	0	0	0	0	0	0	0	4)	$\left(\Delta s_5 \right)$		-3.846	ļ

(b) If we let α_{\max} be the maximum value of α for which $x + \alpha \Delta x \ge 0$ and $s + \alpha \Delta s \ge 0$, we must have $\alpha < \alpha_{\max}$. Ideally we would want steplength one. One (crude) choice would be $\alpha = \min\{1, 0.99\alpha_{\max}\}$, and then let

 $x = x + \alpha \Delta x, \quad y = y + \alpha \Delta y, \quad s = s + \alpha \Delta s.$

2. (a) We have x^* nonnegative with $Ax^* = b$ and

$$A_{+} = \begin{pmatrix} 4 & -1 \\ 1 & 0 \\ 1 & 0 \end{pmatrix}.$$

1

We see that A_+ has a leading nonsingular submatrix of dimension 2×2 . Hence, A_+ has full column rank. It follows that x^* is a basic feasible solution.

(b) First (i). Let
$$x_B = (x_1 \ x_2 \ x_3)^T$$
. Then $x_B = (0 \ 1 \ 2)^T$. Compute y from $B^T y = c_B$ and let $s_N = c_N - N^T y$. We obtain

$$\begin{pmatrix} 2 & 1 & 3 \\ 4 & 1 & 1 \\ -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 8 \\ 7 \\ -1 \end{pmatrix}, \text{ which gives } y = \begin{pmatrix} 1 \\ \frac{3}{2} \\ \frac{3}{2} \end{pmatrix}, \begin{pmatrix} s_4 \\ s_5 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ \frac{3}{2} \end{pmatrix}$$

Hence, since $s_N \ge 0$, the simplex method shows that x^* is optimal.

Now (ii). Let $x_B = (x_2 \ x_3 \ x_4)^T$. Then $x_B = (1 \ 2 \ 0)^T$. Compute y from $B^T y = c_B$ and let $s_N = c_N - N^T y$. We obtain

$$\begin{pmatrix} 4 & 1 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 7 \\ -1 \\ -1 \end{pmatrix}, \text{ which gives } y = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} s_1 \\ s_4 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$

Since $s_1 < 0$, x_1 will enter the basis. We obtain the change in the basic variables from $Bp_B = -A_1$, i.e.,

$$\begin{pmatrix} 4 & -1 & 0 \\ 1 & 0 & -1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} p_2 \\ p_3 \\ p_4 \end{pmatrix} = \begin{pmatrix} -2 \\ -1 \\ -3 \end{pmatrix}, \text{ which gives } \begin{pmatrix} p_2 \\ p_3 \\ p_4 \end{pmatrix} = \begin{pmatrix} -3 \\ -10 \\ -2 \end{pmatrix}.$$

Since $x_4 = 0$, it follows that x_4 leaves the basis, and the new basic variables are $x_B = (x_1 \ x_2 \ x_3)^T$, which has been covered in (i).

Finally (iii). Let $x_B = (x_2 \ x_3 \ x_5)^T$. Then $x_B = (1 \ 2 \ 0)^T$. Compute y from $B^T y = c_B$ and let $s_N = c_N - N^T y$. We obtain

$$\begin{pmatrix} 4 & 1 & 1 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 7 \\ -1 \\ 0 \end{pmatrix}, \text{ which gives } y = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}, \begin{pmatrix} s_1 \\ s_4 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}.$$

Hence, since $s_N \ge 0$, the simplex method shows that x^* is optimal. Consequently, AF was right in that x^* is optimal. By the simplex method, he could have obtained the final basis as $x_B = (x_1 \ x_2 \ x_3)^T$ or $x_B = (x_2 \ x_3 \ x_5)^T$.

3. (a) For u = 1, the resulting Lagrangian relaxed problem becomes

(*IP*₁) minimize
$$-2x_1 - 1x_2 - 3x_3$$

(*IP*₁) subject to $-x_1 - 2x_2 - 3x_3 \ge -3$,
 $x_i \in \{0, 1\}, \quad j = 1, \dots, n.$

By enumeration, we find two optimal solutions, $x(1) = (1 \ 1 \ 0)^T$ and $x(1) = (0 \ 0 \ 1)^T$.

(b) If x(1) is an optimal solution to the Lagrangian relaxed problem for u = 1, a subgradient is given by $3x_1(1) + 6x_2(1) + 7x_3(1) - 8$. Hence, $x(1) = (1 \ 1 \ 0)^T$ gives a subgradient $s_1 = 1$ and $x(1) = (0 \ 0 \ 1)^T$ gives a subgradient $s_2 = -1$.

SF2812

- (c) Since $0 = 1/2s_1 + 1/2s_2$, the zero vector is a subgradient to $\varphi(u)$ at u = 1. Hence, u = 1 is an optimal solution to the dual problem.
- 4. (See the course material.)
- 5. The suggested initial extreme points $v_1 = (-1 \ 1 \ -1 \ 1)^T$ and $v_2 = (-1 \ 1 \ -1)^T$ give the initial basis matrix
 - $B = \begin{pmatrix} -1 & 7 \\ 1 & 1 \end{pmatrix}.$

The right-hand side in the master problem is $b = (1 \ 1)^T$. Hence, the basic variables are given by

 $\begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} = \begin{pmatrix} -1 & 7 \\ 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{3}{4} \\ \frac{1}{4} \end{pmatrix}.$

The cost of the basic variables are given by $(c^T v_1 \ c^T v_2) = (-2 \ -2)$. Consequently, the simplex multipliers are given by

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 7 & 1 \end{pmatrix}^{-1} \begin{pmatrix} -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 0 \\ -2 \end{pmatrix}.$$

By forming $c^T - y_1 A = (1 - 1 \ 1 - 1)$ we obtain the subproblem

2+ minimize
$$x_1 - x_2 + x_3 - x_4$$

subject to $-1 \le x_j \le 1, j = 1, \dots, 4.$

The resulting optimal solution gives a new extreme point $v_3 = (-1 \ 1 \ -1 \ 1)^T$ with reduced cost -2. The corresponding column in the master problem is $(5 \ 1)^T$, and we obtain

$$p_B = -B^{-1} \begin{pmatrix} 5\\1 \end{pmatrix} = -\begin{pmatrix} -\frac{5}{3}\\\frac{2}{3} \end{pmatrix}.$$

By considering the step from α_B along p_B and requiring nonnegativity, we obtain the maximum steplength as 3/8, and α_2 leaves the basis. Hence, α_3 replaces α_2 as basic variable.

The basic variables are now given by

$$\begin{pmatrix} \alpha_1 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} -1 & 5 \\ 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{2}{3} \\ \frac{1}{3} \end{pmatrix}.$$

The cost of the basic variables are given by $(c^T v_1 \ c^T v_3) = (-2 \ -4)$. Consequently, the simplex multipliers are given by

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 5 & 1 \end{pmatrix}^{-1} \begin{pmatrix} -2 \\ -4 \end{pmatrix} = \begin{pmatrix} -\frac{1}{3} \\ -\frac{7}{3} \end{pmatrix}.$$

By forming $c^T - y_1 A = (2/3 - 1/3 4/3 0)$ we obtain the subproblem

 $\frac{7}{3}$ + minimize $\frac{2}{3}x_1 - \frac{1}{3}x_2 + \frac{4}{3}x_3$ subject to $-1 \le x_j \le 1, j = 1, \dots, 4.$

The resulting optimal solutions are v_1 and v_3 , which both give reduced cost 0. Hence, we have found an optimal solution to the original problem. The solution is given by

$$v_1\alpha_1 + v_3\alpha_3 = \begin{pmatrix} -1\\1\\-1\\1 \end{pmatrix} \frac{2}{3} + \begin{pmatrix} -1\\1\\-1\\-1 \end{pmatrix} \frac{3}{5} = \begin{pmatrix} -1\\1\\-1\\\frac{1}{3} \end{pmatrix}.$$

Note: This particular problem may be simplified further, since it is a continuous knapsack problem. By noting that in the subproblem, if we denote the optimal solution of the subproblem by $x(y_1)$, we obtain $x_i(y_1) = -1$ if $c_i - ya_i < 0$ and $x_i(y_1) = -1$ if $c_i - ya_i > 0$. Hence, if we order the ratios c_i/a_i in decreasing order, we obtain $c_3/a_3 = 1$, $c_2/a_2 = 1/2$, $c_4/a_4 = -1/3$, $c_1/a_1 = -1$. Thus, we may start with $y_1 < -1$ for which $x(y_1)$ gives the maximum value of the constraint $-x_1 + 2x_2 + x_3 - 3x_4 - 1$ in the interval $1 - \le x_i \le 1$, $i = 1, \ldots, 4$. We may then increase y_1 until we reach one point among -1, -1/3, 1/2 and 1 at which passing this point with y_1 makes the constraint $-x_1(y_1) + 2x_2(y_1) + x_3(y_1) - 3x_4(y_1) - 1$ switch from being positive to being negative. This is $y_1 = -1/3$ in this case, as was concluded in the final master problem. Then the variable that switches at this point may be assigned a value in the interval that makes the constraint satisfied. Rather than solve a sequence of master problems, we can increase y_1 over the finite set of points, and need then only solve one subproblem to get the appropriate linear combination.