
SF2812 Applied linear optimization, final exam
Thursday January 13 2011 8.00–13.00

Brief solutions

1. (a) A basic feasible solution is a feasible solution which is uniquely defined by the
active constraints. As x̂j > 0, j = 1, 2, 3, the active constraints at x̂ are given
by


1 2 1 0
2 1 0 1
0 0 0 1




x̂1

x̂2

x̂3

x̂4

 =


12
12
0

 .

As there are three active constraints at x̂, and x̂ has dimension four, x̂ cannot
be uniquely defined by the active constraints. Hence, x̂ is not a basic feasible
solution.

(b) The constraints that are active at x̂ remain active for x̂ + αp, where p satisfies


1 2 1 0
2 1 0 1
0 0 0 1




p1

p2

p3

p4

 =


0
0
0

 .

It is straightforward to find such a p. If we let p1 = 1, then p = (1 − 2 3 0)T .
This means that p is uniquely determined up to a multiple scalar. Since cTp = 5,
we conclude that by finding the minimum value of α such that x̂ + αp ≥ 0, we
obtain a new feasible point with four active constraints. This gives

5
2
3
0

+ α


1

−2
3
0

 ≥


0
0
0
0

 .

It follows that the minimum value is α = −1. Since p is unique up to a scalar,
the nullspace of the active constraints at x̂ has dimension one. At x̂ − p, we
add one more constraint, which is not linearly dependent. Hence, x̂ − p will
be uniquely determined by the active constraints, i.e., a basic feasible solution.
Consequently, we may let x̃ = x̂− p = (4 4 0 0)T .

(c) Since x̃ is a basic feasible solution, we may apply the primal simplex method
starting at x̃.
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Then, x1 and x2 are basic variables. We may compute y and s from BTy = cB,
s = c−ATy, i.e.,(

1 2
2 1

) (
y1

y2

)
=

(
−1
−3

)
,

with solution y = (−5/3 1/3)T , so that s = c−ATy = (0 0 5/3 − 1/3)T . As
s4 < 0, we take a step along p given by p4 = 1 and(

1 2
2 1

) (
p1

p2

)
= −

(
0
1

)
,

which gives p1 = −2/3 and p2 = 1/3. By setting xB + αpB ≥ 0, we obtain
αmax = 6. Consequently, new basic variables are x2 = 6 and x4 = 6.
We may compute y and s from BTy = cB, s = c−ATy, i.e.,(

2 1
0 1

) (
y1

y2

)
=

(
−3

0

)
,

with solution y = (−3/2 0)T , so that s = c−ATy = (1/2 0 3/2 0)T . As s ≥ 0,
we have an optimal solution. Hence, x = (0 6 0 6)T is optimal to (LP ).

2. (See the course material.)

3. (a) Insertion of numercial values gives Ax̂ = b, ATŷ + s = c. In addition, x̂ ≥ 0,
ŝ ≥ 0 and x̂j ŝj = 0, j = 1, . . . , 5. Hence, the solutions are optimal to the primal
and dual problems, respectively.

(b) The solution given by x̂ corresponds to x1 and x2 being basic variables. Since
ŝ3 = 0, it follows that x3 may enter the basis without changing the value of the
objective function. Consequently, optimality is preserved. The corresponding
direction is given by p3 = 1 and(

6 2
0 1

) (
p1

p2

)
= −

(
1

−1

)
,

which gives p1 = −1/2 and p2 = 1. By setting xB + αpB ≥ 0, we obtain
αmax = 2. Consequently, new basic variables are x2 = 3 and x3 = 2.
We may compute y and s from BTy = cB, s = c−ATy, i.e.,(

2 1
1 −1

) (
y1

y2

)
=

(
3
3

)
,

with solution y = (2 − 1)T , so that s = c − ATy = (0 0 0 3 3)T . As s ≥ 0,
we have an optimal solution. In addition, since s1 = 0 but s4 > 0 and s5 > 0,
it follows that it is only x1 that may enter the basis again without increasing
the objective function value. This would give us x̂ back. Consequenty, there
are only two optimal basic feasible solutions, x̂ and (0 3 2 0 0)T . Therefore,
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the set of optimal solutions is given by the set of convex combinations of these
points, i.e.,

(1− α)



1
1
0
0
0


+ α



0
3
2
0
0


: 0 ≤ α ≤ 1


.

By comparing to the given x(µ), it follows that x(µ) is close to the optimal
solution given by α = 0.6076.
As the barrier trajectory avoids active constraints, x(µ) will converge to a basic
feasible solution when µ → 0 only if the optimal solution is unique. This is not
the case here.

4. (a) The dual objective ϕ(u) is the optimal solution of

ϕ1(u) = min −x1 − 3x3 − x4 + u(4x1 + 5x2 + 6x3 + 7x4 − 10)
s.t. x1 + x2 ≤ 1, x3 + x4 ≤ 1, xj ∈ {0, 1}, j = 1, . . . , 4,

= −10u−max (1− 4u)x1 − 5ux2 + (3− 6u)x3 + (1− 7u)x4

s.t. x1 + x2 ≤ 1, x3 + x4 ≤ 1,

xj ∈ {0, 1}, j = 1, . . . , 4.

(b) For u ∈ [0, 1/4], it is optimal to let x1 = 1, x2 = 0, x3 = 1 and x4 = 0 in
the Lagrangian relaxation problem. The dual objective function then becomes
ϕ(u) = −4. Since ϕ is concave, it follows that it is maximized on a segment
where it is constant.

(c) As the Lagrangian relaxed problem has integer extreme points if the integer
requirement is relaxed, the bounds are equal. In fact, this case is very special
in that they both give an optimal solution to (IP ).

5. (a) Let yj = |xj |. Since the sign of xj is irrelevant in the constraint of (P1), and
the term in the objective coefficient is vjxj , it follows that the sign of xj is the
negative sign of vj in any optimal solution to (P1). Consequently,

vjxj = vj sign(xj)|xj | = sign(vj)|vj | sign(xj)|xj | = −|vj |yj ,

using sign(vj) sign(xj) = −1 whenever vj and xj are nonzero, plus yj = |xj |.
Hence, (P1) and (LP1) are equivalent.
Let yk = 1 for a k such that |vk| ≥ |vj |, j = 1, . . . , n. The dual associated with
(LP1) takes the form

(DLP1)
maximize −u

subject to u ≥ |vj |, j = 1, . . . , n,
u ≥ 0.
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We then see that yk = 1, yj = 0, j = 1, . . . , k − 1, k + 1, . . . , n, and u = |vk|
form a pair of primal and dual feasible solutions for which strong duality holds.
Hence, they are optimal. We thus conclude that xk = − sign(vk), xj = 0,
j = 1, . . . , k − 1, k + 1, . . . , n, are optimal to (P1). . . . . . . . . . . . . . . . . . . . . . . . (4p)

(b) The suggested initial extreme points v1 = (1 0 0 0)T and v2 = (0 − 1 0 0)T

give the initial basis matrix

B =

(
4 −1
1 1

)
.

The right-hand side in the master problem is b = (2 1)T . Hence, the basic
variables are given by(

α1

α2

)
=

(
4 −1
1 1

)−1(
2
1

)
=

(
3
5
2
5

)
.

The cost of the basic variables are given by (cTv1 cTv2) = (3 −4). Consequently,
the simplex multipliers are given by(

y1

y2

)
=

(
4 1

−1 1

)−1(
3

−4

)
=

(
7
5

−13
5

)
.

By forming cT − y1A = (−13/5 13/5 4/5 6/5) we obtain the subproblem
13
5 + 1

5 minimize −13x1 + 13x2 + 4x3 + 6x4

subject to |x1|+ |x2|+ |x3|+ |x4| ≤ 1.

It follows from (5a) that v1 and v2 are optimal to the subproblem. Consequently,
the optimal value of the subproblem is zero, and the original problem has been
solved. The optimal solution x∗ is given by

x∗ = v1α1 + v2α2 =


1
0
0
0


3
5

+


0

−1
0
0


1
2

=


3
5

−2
5

0
0

 .


