SF2812 Applied linear optimization, final exam Thursday October 202011 14.00-19.00
 Brief solutions

1. (a) It approximately holds that $A x=b, A^{T} y+s=c$ and $x_{j} s_{j}=0, j=1,2,3,4$. However, $s_{2}=-2<0$ contradicts optimality. In addition, x_{2} is almost zero, but negative. One would expect all x-variables and s-variables to be positive in a solution provided by an interior method.
(b) It appears that the computed solution approximately satisfies $A x=b, A^{T} y+$ $s=c$ and $x_{j} s_{j}=\mu, j=1,2,3,4$, for a small value of μ. However, the positivity of x and s are not fulfilled. Therefore, I guess that AF has forgotten to limit the steplength in the Newton iterations so as to retain the positivity of x and s. More specifically, if $\Delta x, \Delta y$ and Δs denote the Newton steps at a particular iteration, the steplength α must be chosen such that $x+\alpha \Delta x>0$ and $s+\alpha \Delta s>0$.
(c) As all optimality conditions except $s_{2} \geq 0$ are approximately fulfilled, we obtain a near-optimal solution to the linear program where $x_{2} \geq 0$ is replaced by $x_{2} \leq 0$. To see this, note that the given x, y and s are near-optimal solutions to the primal-dual pairs of linear programs

	minimize	$c^{T} x$
$\left(P L P^{\prime}\right)$	subject to	$A x=b$,
		$x_{j} \geq 0, \quad j=1,3,4$,
	$x_{2} \leq 0$,	
$\left(D L P^{\prime}\right)$	maximize	$b^{T} y$
	subject to	$A^{T} y+s=c$,
	$s_{j} \geq 0, \quad j=1,3,4$,	
	$s_{2} \leq 0$,	

so AF has in fact solved $\left(P L P^{\prime}\right)$ instead of $(P L P)$.
(d) Let $x_{B}=\left(x_{1} x_{4}\right)^{T}$. Then B is nonsingular, so we have a basic feasible solution. Since $s_{2}<0, x_{2}$ will enter the basis. For $p_{2}=1$, we obtain the change in the basic variables from $B p_{B}=-A_{2}$, i.e.,

$$
\left(\begin{array}{rr}
2 & 0 \\
1 & -1
\end{array}\right)\binom{p_{1}}{p_{4}}=\binom{-2}{1}, \quad \text { which gives } \quad\binom{p_{1}}{p_{4}}=\binom{-1}{-2} .
$$

The maximum steplength is given by the maximum nonnegative α such that

$$
x_{B}+\alpha p_{B}=\binom{x_{1}}{x_{4}}+\alpha\binom{p_{1}}{p_{4}}=\binom{3}{2}+\alpha\binom{-1}{-2} \geq 0,
$$

i.e., $\alpha=1$. Then x_{4} becomes zero, so x_{4} leaves the basis. The new basic feasible solution is given by $x_{B}=\left(x_{1} x_{2}\right)^{T}=\left(\begin{array}{ll}2 & 1\end{array}\right)^{T}$. Compute y from $B^{T} y=c_{B}$ and let $s_{N}=c_{N}-N^{T} y$. We obtain

$$
\left(\begin{array}{rr}
2 & 1 \\
2 & -1
\end{array}\right)\binom{y_{1}}{y_{2}}=\binom{3}{1}, \quad \text { which gives } \quad y=\binom{1}{1},\binom{s_{3}}{s_{4}}=\binom{1}{1} .
$$

Since $s \geq 0$, an optimal solution has been found. The optimal solution is $x=\left(\begin{array}{llll}2 & 1 & 0 & 0\end{array}\right)^{T}$.
2. (See the course material.)
3. The suggested initial extreme points $v_{1}=\left(\begin{array}{llll}-1 & -1 & -1 & 1\end{array}\right)^{T}$ and $v_{2}=\left(\begin{array}{lll}1 & -1 & -1\end{array}\right)^{T}$ give the initial basis matrix

$$
B=\left(\begin{array}{ll}
0 & 4 \\
1 & 1
\end{array}\right) .
$$

The right-hand side in the master problem is $b=(21)^{T}$. Hence, the basic variables are given by

$$
\left(\begin{array}{ll}
0 & 4 \\
1 & 1
\end{array}\right)\binom{\alpha_{1}}{\alpha_{2}}=\binom{2}{1}, \quad \text { which gives } \quad\binom{\alpha_{1}}{\alpha_{2}}=\binom{\frac{1}{2}}{\frac{1}{2}} .
$$

The cost of the basic variables are given by $\left(c^{T} v_{1} c^{T} v_{2}\right)=(-31)$. Consequently, the simplex multipliers are given by

$$
\left(\begin{array}{ll}
0 & 1 \\
4 & 1
\end{array}\right)\binom{y_{1}}{y_{2}}=\binom{-3}{1}, \quad \text { which gives } \quad\binom{y_{1}}{y_{2}}=\binom{1}{-3} .
$$

By forming $c^{T}-y_{1} A=\left(\begin{array}{llll}0 & 1 & 1 & -1\end{array}\right)$ we obtain the subproblem

$$
\begin{array}{rll}
3+ & \text { minimize } & x_{2}+x_{3}-x_{4} \\
& \text { subject to } & -1 \leq x_{j} \leq 1, j=1, \ldots, 4 .
\end{array}
$$

The given extreme points v_{1} and v_{2} are optimal to the subproblem, so the optimal value of the subproblem is zero, and the master problem has been solved. The solution to the original problem is given by

$$
v_{1} \alpha_{1}+v_{3} \alpha_{3}=\left(\begin{array}{r}
-1 \\
-1 \\
-1 \\
1
\end{array}\right) \frac{1}{2}+\left(\begin{array}{r}
1 \\
-1 \\
-1 \\
1
\end{array}\right) \frac{1}{2}=\left(\begin{array}{r}
0 \\
-1 \\
-1 \\
1
\end{array}\right) .
$$

4. (a) The dual objective $\varphi(u)$ is the optimal solution of

$$
\begin{aligned}
\varphi_{1}(u)= & \min -2 x_{1}-x_{2}-3 x_{3}-x_{4}-u\left(1-x_{1}-x_{3}\right) \\
& \text { s.t. } 4 x_{1}+5 x_{2}+6 x_{3}+7 x_{4} \leq 10, x_{j} \in\{0,1\}, j=1, \ldots, 4, \\
= & -u+\min (u-2) x_{1}-x_{2}+(u-3) x_{3}-x_{4} \\
& \text { s.t. } 4 x_{1}+5 x_{2}+6 x_{3}+7 x_{4} \leq 10, x_{j} \in\{0,1\}, j=1, \ldots, 4 .
\end{aligned}
$$

(b) The feasible solutions to the Lagrangian relaxation problem and their corresponding values of $c^{T} x-u\left(a^{T} x-b\right)$ are given by

$$
\begin{array}{lll}
x^{(1)}=\left(\begin{array}{llll}
0 & 0 & 0 & 0
\end{array}\right)^{T}, & & c^{T} x^{(1)}-u\left(a^{T} x^{(1)}-b\right)=-u \\
x^{(2)}=\left(\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right)^{T}, & & c^{T} x^{(2)}-u\left(a^{T} x^{(2)}-b\right)=-2 \\
x^{(3)}=\left(\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right)^{T}, & c^{T} x^{(3)}-u\left(a^{T} x^{(3)}-b\right)=-1-u \\
x^{(4)}=\left(\begin{array}{llll}
0 & 0 & 1 & 0
\end{array}\right)^{T}, & & c^{T} x^{(4)}-u\left(a^{T} x^{(4)}-b\right)=-3 \\
x^{(5)}=\left(\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right)^{T}, & c^{T} x^{(5)}-u\left(a^{T} x^{(5)}-b\right)=-1-u \\
x^{(6)}=\left(\begin{array}{llll}
1 & 1 & 0 & 0
\end{array}\right)^{T}, & & c^{T} x^{(6)}-u\left(a^{T} x^{(6)}-b\right)=-3 \\
x^{(7)}=\left(\begin{array}{llll}
1 & 0 & 1 & 0
\end{array}\right)^{T}, & & c^{T} x^{(7)}-u\left(a^{T} x^{(7)}-b\right)=-5+u .
\end{array}
$$

By finding the minimum for each $u \geq 0$, it follows that $\varphi(u)=-5+u$ if $0 \leq u \leq 2$ and $\varphi(u)=-1-u$ if $u \geq 2$. Hence, $u^{*}=2$.
(c) There are five optimal solutions to the Lagrangian relaxation problem for $u=2$, namely $x^{(3)}, x^{(4)}, x^{(5)}, x^{(6)}$ and $x^{(7)}$. They give subgradients $-\left(a^{T} x^{(k)}-b\right)$, $k=3,4,5,6,7$, as $-1,0,-1,0$ and 1 respectively.
(As $-\left(a^{T} x^{(k)}-b\right)=0$ for $k=4,6$, it follows that $x^{(4)}$ and $x^{(6)}$ are optimal to (IP).)
5. (a) Since $c \geq 0$, a feasible solution to $(D L P)$ is given by $y=0, s=c$. Hence, $\operatorname{optval}(D L P) \geq 0$ as $b^{T} y=0$ for this solution.
(b) Since $c \geq 0$ and $x \geq 0$ for all x that are feasible to (PLP), it holds that $c^{T} x \geq 0$. Hence, optval $(P L P) \geq 0$. It may hold that $(P L P)$ is infeasible, e.g., $A=-1$, $b=1$.
(c) Since $(D L P)$ is feasible, there is a feasible solution y, s. Then, $y+\alpha \eta$ is feasible for all $\alpha \geq 0$, since $A^{T}(y+\alpha \eta) \leq A^{T} y \leq c$. Since $b^{T}(y+\alpha \eta)$ tends to infinity as $\alpha \rightarrow \infty$, we conclude that optval $(P L P)=\operatorname{optval}(D L P)=\infty$.
(d) If there is no η such that $A^{T} \eta \leq 0$ and $b^{T} \eta>0$, then the primal-dual pairs of linear programs

	minimize	$0^{T} x$		
$\left(P L P^{\prime}\right)$	subject to	$A x=b$,		
	$x \geq 0$,	$\left(D L P^{\prime}\right)$	\quad	maximize
:---				
subject to	$A^{T} \eta, A^{T} \eta \leq 0$,			

have optimal value zero. Hence, $\left(P L P^{\prime}\right)$ is feasible. Thus, $(P L P)$ is feasible, since $\left(P L P^{\prime}\right)$ and $(P L P)$ have the same feasible region. Consequently, $(P L P)$ and $(D L P)$ are both feasible, so they have the same finite optimal value by strong duality.

