SF2812 Applied linear optimization, final exam Thursday October 182012 14.00-19.00
 Brief solutions

1. As $\widehat{x}_{j}>0, j=1,2,3,4$, the active constraints at \widehat{x} are given by

$$
\left(\begin{array}{rrrrr}
2 & 1 & -1 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 \\
1 & 2 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
\widehat{x}_{1} \\
\widehat{x}_{2} \\
\widehat{x}_{3} \\
\widehat{x}_{4} \\
\widehat{x}_{5}
\end{array}\right)=\left(\begin{array}{l}
5 \\
1 \\
7 \\
0
\end{array}\right)
$$

These constraints remain active for $\widehat{x}+\alpha p$, where p satisfies

$$
\left(\begin{array}{rrrrr}
2 & 1 & -1 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 \\
1 & 2 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3} \\
p_{4} \\
p_{5}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

From the given hint we obtain $p=\left(\begin{array}{lllll}2 & -1 & 3 & -1 & 0\end{array}\right)^{T}$. The additional requirement $\widehat{x}+\alpha p \geq 0$ gives

$$
\left(\begin{array}{l}
3 \\
2 \\
3 \\
1 \\
0
\end{array}\right)+\alpha\left(\begin{array}{r}
2 \\
-1 \\
3 \\
-1 \\
0
\end{array}\right) \geq\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

It follows that $\widehat{x}+\alpha p \geq 0$ for $-1 \leq \alpha \leq 1$. In addition, it holds that $c^{T} p=0$, so that $\widehat{x}+\alpha p$ has the same objective function value as \widehat{x} for all α. By taking the limiting values of α, we get two new points at which five constraints are active, namely

$$
x^{(1)}=\widehat{x}-p=\left(\begin{array}{c}
1 \\
3 \\
0 \\
2 \\
0
\end{array}\right), \quad x^{(2)}=\widehat{x}+p=\left(\begin{array}{l}
5 \\
1 \\
6 \\
0 \\
0
\end{array}\right)
$$

As there are five active constraints at these points, we expect them to be basic feasible solutions. By assuming that x_{1}, x_{2} and x_{4} are basic variables, corresponding to $x^{(1)}$, we may compute y and s from $B^{T} y=c_{B}, s=c-A^{T} y$, i.e.,

$$
\left(\begin{array}{rrr}
2 & 0 & 1 \\
1 & 1 & 2 \\
0 & -1 & 0
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right)
$$

with solution $y=\left(\begin{array}{lll}-1 & 0 & 1\end{array}\right)^{T}$, so that $s=c-A^{T} y=\left(\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right)^{T}$. As $s \geq 0$, we have verified optimality of $x^{(1)}$, and hence \widehat{x} and $x^{(2)}$ are optimal as well. It is straightforward to verify that $x^{(2)}$ is also a basic feasible solution at which x_{1}, x_{2} and x_{3} are basic variables.
2. (a) With $X=\operatorname{diag}(x)$ and $S=\operatorname{diag}(s)$, the linear system of equations takes the form

$$
\left(\begin{array}{ccc}
A & 0 & 0 \\
0 & A^{T} & I \\
S & 0 & X
\end{array}\right)\left(\begin{array}{c}
\Delta x \\
\Delta y \\
\Delta s
\end{array}\right)=-\left(\begin{array}{c}
A x-b \\
A^{T} y+s-c \\
X S e-\mu e
\end{array}\right)
$$

for a suitable value of the barrier parameter μ. We may for example let $\mu=$ $x^{T} s / n=5$. Insertion of numerical values gives

$$
\left(\begin{array}{rrrrrrrrrr}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 1 \\
4 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 4
\end{array}\right)\left(\begin{array}{r}
\Delta x_{1} \\
\Delta x_{2} \\
\Delta x_{3} \\
\Delta x_{4} \\
\Delta y_{1} \\
\Delta y_{2} \\
\Delta s_{1} \\
\Delta s_{2} \\
\Delta s_{3} \\
\Delta s_{4}
\end{array}\right)=\left(\begin{array}{r}
-6 \\
6 \\
-4 \\
-2 \\
0 \\
0 \\
1 \\
-1 \\
-1 \\
1
\end{array}\right)
$$

(b) We would compute $x^{(1)}, y^{(1)}$ and $s^{(1)}$ as $x^{(1)}=x^{(0)}+\alpha \Delta x^{(0)}, y^{(1)}=y^{(0)}+$ $\alpha \Delta y^{(0)}, s^{(1)}=s^{(0)}+\alpha \Delta s^{(0)}$, where α is a positive steplength. In a pure Newton step, $\alpha=1$, but we must also maintain $x^{(1)}>0$ and $s^{(1)}>0$. We may compute $\alpha_{\max }$ as the largest step α for which $x+\alpha \Delta x \geq 0$ and $s+\alpha \Delta s \geq 0$. We may then let $\alpha=\min \left\{1,0.99 \alpha_{\max }\right\}$ to ensure positivity of $x^{(1)}>0$ and $s^{(1)}>0$. (In order to get a convergent method, some additional condition on α ensuring proximity to the barrier trajectory may need to be imposed.)
3. (See the course material.)
4. The suggested initial extreme points $v_{1}=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)^{T}$ and $v_{2}=\left(\begin{array}{lll}-1 & -1 & -1\end{array}\right)^{T}$ give the initial basis matrix

$$
B=\left(\begin{array}{cc}
A v_{1} & A v_{2} \\
1 & 1
\end{array}\right)=\left(\begin{array}{cc}
2 & -2 \\
1 & 1
\end{array}\right)
$$

The right-hand side in the master problem is $b=\left(\begin{array}{ll}0 & 1\end{array}\right)^{T}$. Hence, the basic variables are given by

$$
\left(\begin{array}{rr}
2 & -2 \\
1 & 1
\end{array}\right)\binom{\alpha_{1}}{\alpha_{2}}=\binom{0}{1}, \quad \text { which gives } \quad\binom{\alpha_{1}}{\alpha_{2}}=\binom{\frac{1}{2}}{\frac{1}{2}}
$$

The cost of the basic variables are given by $\left(c^{T} v_{1} c^{T} v_{2}\right)=\left(\begin{array}{ll}3 & -3\end{array}\right)$. Consequently, the simplex multipliers are given by

$$
\left(\begin{array}{rr}
2 & 1 \\
-2 & 1
\end{array}\right)\binom{y_{1}}{y_{2}}=\binom{3}{-3}, \quad \text { which gives } \quad\binom{y_{1}}{y_{2}}=\binom{\frac{3}{2}}{0}
$$

By forming $c^{T}-y_{1} A=(1 / 2-8 \quad 15 / 2)$ we obtain the subproblem

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2} x_{1}-8 x_{2}+\frac{15}{2} x_{3} \\
\text { subject to } & -1 \leq x_{j} \leq 1, \quad j=1,2,3
\end{array}
$$

An optimal extreme point to the subproblem is given by $v_{3}=\left(\begin{array}{lll}-1 & 1 & -1\end{array}\right)^{T}$ with optimal value -16 . Hence, α_{3} should enter the basis. The corresponding column in the master problem is given by

$$
\binom{A v_{3}}{1}=\binom{6}{1}
$$

The change to the basic variables is given by

$$
\left(\begin{array}{rr}
2 & -2 \\
1 & 1
\end{array}\right)\binom{p_{1}}{p_{2}}=-\binom{6}{1}, \quad \text { which gives } \quad\binom{p_{1}}{p_{2}}=\binom{-2}{1} .
$$

Finding the maximum step η for which $\alpha+\eta p \geq 0$ gives

$$
\binom{\frac{1}{2}}{\frac{1}{2}}+\eta\binom{-2}{1} \geq\binom{ 0}{0}
$$

i.e., $\eta=1 / 4$ so that α_{1} leaves the basis.

Hence, the new basis corresponds to v_{2} and v_{3} so that

$$
B=\left(\begin{array}{cc}
A v_{3} & A v_{2} \\
1 & 1
\end{array}\right)=\left(\begin{array}{cc}
6 & -2 \\
1 & 1
\end{array}\right)
$$

The right-hand side in the master problem is $b=\left(\begin{array}{ll}0 & 1\end{array}\right)^{T}$. Hence, the basic variables are given by

$$
\left(\begin{array}{rr}
6 & -2 \\
1 & 1
\end{array}\right)\binom{\alpha_{3}}{\alpha_{2}}=\binom{0}{1}, \quad \text { which gives } \quad\binom{\alpha_{3}}{\alpha_{2}}=\binom{\frac{1}{4}}{\frac{3}{4}}
$$

The cost of the basic variables are given by $\left(c^{T} v_{3} c^{T} v_{2}\right)=(-7-3)$. Consequently, the simplex multipliers are given by

$$
\left(\begin{array}{rr}
6 & 1 \\
-2 & 1
\end{array}\right)\binom{y_{1}}{y_{2}}=\binom{-7}{-3}, \quad \text { which gives } \quad\binom{y_{1}}{y_{2}}=\binom{-\frac{1}{2}}{-4}
$$

By forming $c^{T}-y_{1} A=(5 / 2 \quad 0 \quad 3 / 2)$ we obtain the subproblem

$$
\begin{array}{rll}
4+ & \operatorname{minimize} & \frac{5}{2} x_{1}+\frac{3}{2} x_{3} \\
& \text { subject to } & -1 \leq x_{j} \leq 1, \quad j=1,2,3
\end{array}
$$

Both v_{2} and v_{3} are optimal extreme points to the subproblem, so the optimal value of the subproblem is 0 . Hence, the master problem has been solved. The solution to the original problem is given by

$$
v_{3} \alpha_{3}+v_{2} \alpha_{2}=\left(\begin{array}{r}
-1 \\
1 \\
-1
\end{array}\right) \frac{1}{4}+\left(\begin{array}{c}
-1 \\
-1 \\
-1
\end{array}\right) \frac{3}{4}=\left(\begin{array}{c}
-1 \\
-\frac{1}{2} \\
-1
\end{array}\right)
$$

The optimal value is -4 .
5. (a) We obtain

$$
\begin{aligned}
\varphi(u)= & \text { minimize } \quad(2-u) x_{1}-2(1+2 u) x_{2}+3(1+u) x_{3} \\
& \text { subject to } \quad x_{j} \in\{-1,0,1\}, \quad j=1,2,3
\end{aligned}
$$

It is optimal to let x_{j} be plus or minus one, with opposite sign to the corresponding coefficient in the objective function. This gives

$$
\varphi(u)=-|2-u|-2|1+2 u|-3|1+u| .
$$

The absolute value functions change sign at three distinct points, $u=-1$, $u=-1 / 2$ and $u=2$.
If $u \leq-1$, then $\varphi(u)=(u-2)+2(1+2 u)+3(1+u)=8 u+3$.
If $-1 \leq u \leq-1 / 2$, then $\varphi(u)=(u-2)+2(1+2 u)-3(1+u)=2 u-3$.
If $-1 / 2 \leq u \leq 2$, then $\varphi(u)=(u-2)-2(1+2 u)-3(1+u)=-6 u-7$.
If $u \geq 2$, then $\varphi(u)=-(u-2)-2(1+2 u)-3(1+u)=-8 u-3$.
Consequently, we obtain

$$
\varphi(u)= \begin{cases}8 u+3 & \text { if } u \leq-1 \\ 2 u-3 & \text { if }-1 \leq u \leq-\frac{1}{2} \\ -6 u-7 & \text { if }-\frac{1}{2} \leq u \leq 2 \\ -8 u-3 & \text { if } u \geq 2\end{cases}
$$

It follows that $u^{*}=-1 / 2$ is optimal to (D) with $\varphi\left(u^{*}\right)=-4$.
(b) For $u^{*}=-1 / 2$, the Lagrangian relaxation problem is given by

$$
\begin{aligned}
\varphi\left(u^{*}\right)= & \text { minimize } \quad \frac{5}{2} x_{1}+\frac{3}{2} x_{3} \\
& \text { subject to } \quad x_{j} \in\{-1,0,1\}, \quad j=1,2,3
\end{aligned}
$$

Hence, it follows that $x_{1}\left(u^{*}\right)=-1$ and $x_{3}\left(u^{*}\right)=-1$ in an optimal solution, but $x_{2}\left(u^{*}\right)$ could be $-1,0$ or 1 . Hence, we get three optimal solutions, $x^{1}\left(u^{*}\right)=$ $\left(\begin{array}{lll}-1 & -1 & -1\end{array}\right)^{T}, x^{2}\left(u^{*}\right)=\left(\begin{array}{lll}-1 & 0 & -1\end{array}\right)^{T}$ and $x^{3}\left(u^{*}\right)=\left(\begin{array}{lll}-1 & 1 & -1\end{array}\right)^{T}$. By evaluating the relaxed constraint with reversed sign, $-x_{1}-4 x_{2}+3 x_{3}$, at these three points we get three subgradients, $s^{1}=2, s^{2}=-2$ and $s^{3}=-6$.
(c) Since the only constraint in the Lagrangian relaxation problem is $x_{j} \in\{-1,0,1\}$, $j=1,2,3$, the optimal value will be unchanged if the integrality requirement is relaxed in that problem. Hence, the optimal values of the Lagrangian dual problem (D) and the LP relaxation $(L P)$ will be identical. This is indeed the case, they are both -4 .

