SF2812 Applied linear optimization, final exam
 Thursday May 222014 14.00-19.00
 Brief solutions

1. (See the course material.)
2. (a) The system of primal-dual nonlinear equations is given by

$$
\begin{array}{r}
x_{1}+x_{2}=1, \\
y+s_{1}=1, \\
y+s_{2}=3, \\
x_{1} s_{1}=\mu, \\
x_{2} s_{2}=\mu . \tag{1e}
\end{array}
$$

where we also implicitly require $x>0$ and $s>0$. We may use (1b)-(1e) to express x_{1}, x_{2}, s_{1} and s_{2} as a function of y according to

$$
s_{1}=1-y, \quad s_{2}=3-y, \quad x_{1}=\frac{\mu}{1-y}, \quad x_{2}=\frac{\mu}{3-y} .
$$

Insertion into (1a) gives $\frac{\mu}{1-y}+\frac{\mu}{3-y}=1$ or equivalently

$$
y^{2}-2(2-\mu) y+3-4 \mu=0 .
$$

Solving this equation gives

$$
y=2-\mu-\sqrt{(2-\mu)^{2}-3+4 \mu}=y=2-\mu-\sqrt{1+\mu^{2}},
$$

where the minus sign has been chosen to make $y<1$, required by $s=1-y>0$. With that we can, after simplification, express the solution as

$$
\begin{aligned}
& x(\mu)=\frac{1}{2}\binom{1-\mu+\sqrt{1+\mu^{2}}}{1+\mu-\sqrt{1+\mu^{2}}}, \\
& y(\mu)=2-\mu-\sqrt{1+\mu^{2}}, \\
& s(\mu)=\binom{-1+\mu+\sqrt{1+\mu^{2}},}{1+\mu+\sqrt{1+\mu^{2}}} .
\end{aligned}
$$

(b) Letting $\mu \rightarrow 0$ gives

$$
x=\binom{1}{0}, \quad y=1, \quad s=\binom{0}{2} .
$$

It is straightforward to very that $A x=b, x \geq 0, A^{T} y+s=c, s \geq 0$. Consequently, optimality holds.
3. The values of b_{1} and b_{2} must be such that $A \widehat{x}=b$, which gives $b_{1}=6$ and $b_{2}=10$. For these values of b_{1} and b_{2}, the given \widehat{x} is feasible.
The given \widehat{x} is not a basic feasible solution. In order for \widehat{x} to be optimal, there cannot be a basic feasible solution with lower objective function value. To find a basic feasible solution, we may compute directions in the null space of A_{+}, and successively add constraints. The v given in the hint is such that $A_{+} v_{+}=0, v_{0}=0$.

Hence, if \widehat{x} is optimal, it must hold that $c^{T} v=0$. This implies that $c_{1}=3$. If we compute the maximum value of α such that of $\widehat{x}+\alpha v \geq 0$, we obtain $\alpha_{\max }=1$. The point $\widehat{x}+\alpha_{\max } v$ has one more active constraint, and is in fact a basic feasible solution, with $x_{1}=4$ and $x_{3}=2$ as basic variables. The simplex multipliers are given by $B^{T} y=c_{B}$, i.e.,

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 3
\end{array}\right)\binom{y_{1}}{y_{2}}=\binom{3}{-1}
$$

which gives $y=(5-2)^{T}$. The reduced costs are now given by $s=c-A^{T} y=$ $\left(000 c_{4}+3\right)^{T}$. Consequently, $s \geq 0$ if $c_{4} \geq-3$. As the basic variables are strictly positive, it follows that the basic feasible solution is not optimal if $c_{4}<-3$. Hence, we conclude that \widehat{x} is optimal if and only if $b_{1}=6, b_{2}=10, c_{1}=3$ and $c_{4} \geq-3$.
4. (a) For a fix vector $u \in \mathbb{R}^{n}$, Lagrangian relaxation of the first set of constraints gives

$$
\begin{aligned}
\operatorname{minimize} & \sum_{i=1}^{n}\left(-u_{i}+\sum_{j=1}^{n}\left(u_{i}-c_{i j}\right) x_{i j}\right)+\sum_{j=1}^{n} f_{j} z_{j} \\
\text { subject to } & \sum_{i=1}^{n} a_{i} x_{i j} \leq b_{j} z_{j}, \quad j=1, \ldots, n, \\
& x_{i j} \in\{0,1\}, \quad i=1, \ldots, n, j=1, \ldots, n, \\
& z_{j} \in\{0,1\}, \quad j=1, \ldots, n,
\end{aligned}
$$

where $a_{i}, i=1, \ldots, n, b_{j}, j=1, \ldots, n, f_{j}, j=1, \ldots, n$, and $c_{i j}, i=1, \ldots, n$, $j=1, \ldots, n$, are nonnegative integer constants.
(b) For a fix nonnegative vector $v \in \mathbb{R}^{n}$, Lagrangian relaxation of the second group of constraints gives

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i=1}^{n} \sum_{j=1}^{n}\left(a_{i} v_{j}-c_{i j}\right) x_{i j}+\sum_{j=1}^{n}\left(f_{j}-b_{j} v_{j}\right) z_{j} \\
\text { subject to } & \sum_{j=1}^{n} x_{i j}=1, \quad i=1, \ldots, n \\
& x_{i j} \in\{0,1\}, \quad i=1, \ldots, n, j=1, \ldots, n \\
& z_{j} \in\{0,1\}, \quad j=1, \ldots, n
\end{array}
$$

where $a_{i}, i=1, \ldots, n, b_{j}, j=1, \ldots, n, f_{j}, j=1, \ldots, n$, and $c_{i j}, i=1, \ldots, n$, $j=1, \ldots, n$, are nonnegative integer constants.
(c) The first relaxation decomposes into one separate problem for each j according to

$$
\begin{aligned}
\operatorname{minimize} & \sum_{i=1}^{n}\left(u_{i}-c_{i j}\right) x_{i j}+f_{j} z_{j} \\
\text { subject to } & \sum_{i=1}^{n} a_{i} x_{i j} \leq b_{j} z_{j}, \\
& x_{i j} \in\{0,1\}, \quad i=1, \ldots, n, \\
& z_{j} \in\{0,1\},
\end{aligned}
$$

for $j=1, \ldots, n$. We can here solve two problems, for $z_{j}=0$ and $z_{j}=1$, and then take the minimum. For $z_{j}=0$, the solution is given by $x_{i j}=0$,
$j=1, \ldots, n$. For $z_{j}=1$, we obtain a binary knapsack problem, which may for example be solved using dynamical programming.
The second relaxation decomposes into trivial problems. For the z-variables we obtain for each i according to

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{j=1}^{n}\left(f_{j}-b_{j} v_{j}\right) z_{j} \\
\text { subject to } & z_{j} \in\{0,1\}, \quad j=1, \ldots, n
\end{array}
$$

which can be solved directly with $z_{j}=1$ if $f_{j}-b_{j} v_{j}<0$ and $z_{j}=0$ if $f_{j}-b_{j} v_{j} \geq 0$ for $j=1, \ldots, n$. For the x-variables we obtain

$$
\begin{aligned}
\operatorname{minimize} & \sum_{j=1}^{n}\left(a_{i} v_{j}-c_{i j}\right) x_{i j} \\
\text { subject to } & \sum_{j=1}^{n} x_{i j}=1, \\
& x_{i j} \in\{0,1\}, \quad j=1, \ldots, n,
\end{aligned}
$$

for $i=1, \ldots, n$. These can be solved directly by noting which $x_{i j}$-variable having the smallest coefficient in the objective function.
(d) The second relaxation gives a relaxed problem which gives integer optimal solutions even if one relaxes the integer constraint. Hence, the corresponding dual underestimation becomes identical with the one obtained if performing an LP-relaxation.
The first relaxation gives a more complicated relaxed problem, and here one can expect the underestimation to be better than one would obtain with an LP-relaxation.
5. (a) For the given cut patterns, we obtain

$$
B=\left(\begin{array}{ccc}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right), \quad x_{B}=B^{-1} b=\left(\begin{array}{c}
20 \\
25 \\
40
\end{array}\right), \quad y=B^{-T} e=\left(\begin{array}{c}
\frac{1}{3} \\
\frac{1}{2} \\
1
\end{array}\right)
$$

with $e=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)^{T}$. As $y \geq 0$ no slack variables enters the basis.
The subproblem is given by

$$
\begin{aligned}
1-\frac{1}{6} \text { maximize } & 2 \alpha_{1}+3 \alpha_{2}+6 \alpha_{3} \\
\text { subject to } & 3 \alpha_{1}+5 \alpha_{2}+9 \alpha_{3} \leq 11 \\
& \alpha_{i} \geq 0, \text { integer, } \quad i=1,2,3
\end{aligned}
$$

We may enumerate the feasible solutions for this small problem to conclude that the optimal value of the subproblem is $\alpha^{*}=\left(\begin{array}{lll}2 & 1 & 0\end{array}\right)^{T}$ with optimal value $-1 / 6$. Hence, $a_{4}=\left(\begin{array}{lll}2 & 1 & 0\end{array}\right)^{T}$ and the maximum step is given by

$$
0 \leq x=B^{-1} b-\eta B^{-1} a_{4}=\left(\begin{array}{c}
20 \\
25 \\
40
\end{array}\right)-\eta\left(\begin{array}{c}
\frac{2}{3} \\
\frac{1}{2} \\
0
\end{array}\right) .
$$

Hence, $\eta_{\max }=30$ and x_{1} leaves the basis, so that the basic variables are given by $x_{2}=10, x_{3}=40$ and $x_{4}=30$. The reduced costs are given by

$$
y=B^{-T} e=\left(\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)^{-1}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

which gives $y_{1}=1 / 4, y_{2}=1 / 2$ and $y_{3}=1$.
The subproblem is given by

$$
\begin{aligned}
1-\quad \frac{1}{4} \text { maximize } & \alpha_{1}+2 \alpha_{2}+4 \alpha_{3} \\
\text { subject to } & 3 \alpha_{1}+5 \alpha_{2}+9 \alpha_{3} \leq 11 \\
& \alpha_{i} \geq 0, \text { integer, } \quad i=1,2,3
\end{aligned}
$$

We may enumerate the feasible solutions for this small problem to conclude that the optimal value is zero, so that the linear program has been solved. The optimal solution is $x_{2}=10, x_{3}=40$ and $x_{4}=30$, with $a_{2}=\left(\begin{array}{ll}0 & 2\end{array}\right)^{T}$, $a_{3}=\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)^{T}$ and $a_{4}=\left(\begin{array}{lll}2 & 1 & 0\end{array}\right)^{T}$.
(b) The solution given by the linear programming relaxation happens to be integer valued. This means that we have solved the original problem as well. The optimal solution is to use $80 W$-rolls, with 10 rolls cut according to pattern $\left(\begin{array}{ll}0 & 2\end{array}\right)^{T}$, 40 rolls cut according to pattern $\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)^{T}$ and 30 rolls cut according to pattern $\left(\begin{array}{lll}2 & 1 & 0\end{array}\right)^{T}$.
(Note that this is very special. In general one can not expect to obtain an optimal integer solution in this way.)

