SF2812 Applied linear optimization, final exam
 Wednesday March 182015 8.00-13.00
 Brief solutions

1. (a) Insertion of numerical values gives $A \widehat{x}=b$. Hence, since \widehat{x} is nonnegative, it is feasible.
Since v belongs to the nullspace of $A, \widehat{x}+\alpha v$ is feasible for all α such that $\widehat{x}+\alpha v$ is nonnegative. We have

$$
x+\alpha v=\left(\begin{array}{l}
2 \\
2 \\
1 \\
1 \\
0
\end{array}\right)+\alpha\left(\begin{array}{r}
1 \\
-1 \\
-1 \\
1 \\
0
\end{array}\right)
$$

By taking the limiting values of α for which $x+\alpha v$ remains nonnegative, we obtain $x^{(1)}=\left(\begin{array}{lllll}1 & 3 & 2 & 0 & 0\end{array}\right)^{T}$ for $\alpha^{(1)}=-1$ and $x^{(2)}=\left(\begin{array}{lllll}3 & 1 & 0 & 2 & 0\end{array}\right)^{T}$ for $\alpha^{(2)}=1$. These solutions both have three positive components. In addition, the corresponding basis matrices are upper triangular, hence nonsingular. Therefore, both $x^{(1)}$ and $x^{(2)}$ are basic feasible solutions.
(b) We may use the basis provided by $x^{(1)}$ to calculate

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 2 & 1
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right)
$$

i.e., $y=\left(\begin{array}{lll}1 & -1 & 0\end{array}\right)^{T}$. Then, $s=c-A^{T} y=\left(\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right)^{T}$. Since $s \geq 0$, it follows that $x^{(1)}$ together with y and s form a primal and dual optimal pair. In addition, since \widehat{x} and $x^{(1)}$ have the same objective function value, it follows that \widehat{x} is optimal.
(c) Since $\widehat{x}_{i}>0$ for $i=1,2,3,4$ and there must hold complementarity $\widehat{x}_{j} \widehat{s}_{j}=0$, $j=1, \ldots, 5$, for any pair of primal and dual optimal solutions \widehat{x} and \widehat{y}, \widehat{s} respectively, we conclude that $\widehat{s}_{j}=0, j=1,2,3,4$.
2. The suggested initial extreme points $v_{1}=\left(\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right)^{T}$ and $v_{2}=\left(\begin{array}{llll}0 & -1 & 0 & 0\end{array}\right)^{T}$ give the initial basis matrix

$$
B=\left(\begin{array}{rr}
3 & -1 \\
1 & 1
\end{array}\right)
$$

The right-hand side in the master problem is $b=\left(\begin{array}{ll}2 & 1\end{array}\right)^{T}$. Hence, the basic variables are given by

$$
\left(\begin{array}{rr}
3 & -1 \\
1 & 1
\end{array}\right)\binom{\alpha_{1}}{\alpha_{2}}=\binom{2}{1}, \quad \text { which gives } \quad\binom{\alpha_{1}}{\alpha_{2}}=\binom{\frac{3}{4}}{\frac{1}{4}}
$$

The cost of the basic variables are given by $\left(c^{T} v_{1} c^{T} v_{2}\right)=\left(\begin{array}{ll}-4 & 0\end{array}\right)$. Consequently, the simplex multipliers are given by

$$
\left(\begin{array}{rr}
3 & 1 \\
-1 & 1
\end{array}\right)\binom{y_{1}}{y_{2}}=\binom{-4}{0}, \quad \text { which gives } \quad\binom{y_{1}}{y_{2}}=\binom{-1}{-1}
$$

By forming $c^{T}-y_{1} A=\left(\begin{array}{lll}-1 & 1 & 0\end{array}\right)$ we obtain the subproblem

$$
\begin{aligned}
1+ & \text { minimize } \\
\text { subject to } & \|x\|_{1}+x_{2}+x_{4} \\
&
\end{aligned}
$$

The given extreme points v_{1} and v_{2} are optimal to the subproblem, so the optimal value of the subproblem is zero, and the master problem has been solved. The solution to the original problem is given by

$$
v_{1} \alpha_{1}+v_{3} \alpha_{3}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \frac{3}{4}+\left(\begin{array}{r}
0 \\
-1 \\
0 \\
0
\end{array}\right) \frac{1}{4}=\left(\begin{array}{r}
\frac{3}{4} \\
-\frac{1}{4} \\
0 \\
0
\end{array}\right)
$$

3. (a) With $X=\operatorname{diag}(x)$ and $S=\operatorname{diag}(s)$, the linear system of equations takes the form

$$
\left(\begin{array}{ccc}
A & 0 & 0 \\
0 & A^{T} & I \\
S & 0 & X
\end{array}\right)\left(\begin{array}{c}
\Delta x \\
\Delta y \\
\Delta s
\end{array}\right)=-\left(\begin{array}{c}
A x-b \\
A^{T} y+s-c \\
X S e-\mu e
\end{array}\right)
$$

Insertion of numerical values gives

$$
\left(\begin{array}{llllllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 3 & 4 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 2 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 3 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 4 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 4 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{r}
\Delta x_{1} \\
\Delta x_{2} \\
\Delta x_{3} \\
\Delta x_{4} \\
\Delta y_{1} \\
\Delta y_{2} \\
\Delta s_{1} \\
\Delta s_{2} \\
\Delta s_{3} \\
\Delta s_{4}
\end{array}\right)=\left(\begin{array}{r}
-6 \\
-14 \\
-1 \\
-3 \\
0 \\
-3 \\
0 \\
0 \\
0 \\
0
\end{array}\right) .
$$

(b) If we compute $\alpha_{\max }$ as the largest step α for which $x+\alpha \Delta x \geq 0$ and $s+\alpha \Delta s \geq 0$, the most limiting step is for component 3 in x, where $2-3.6 \alpha \geq 0$ gives $\alpha_{\max }=5 / 9$. As $\alpha_{\max }<1$ we cannot accept the unit step. We may set
$\alpha=0.99 \alpha_{\max }$ for this value of $\alpha_{\max }$ which gives $\alpha=0.55$. Then,

$$
\begin{aligned}
x^{(1)}=\left(\begin{array}{l}
4 \\
2 \\
2 \\
1
\end{array}\right)+0.55\left(\begin{array}{r}
-2.4 \\
0.4 \\
-3.6 \\
-0.4
\end{array}\right)=\left(\begin{array}{l}
2.68 \\
2.22 \\
0.02 \\
0.78
\end{array}\right), \\
y^{(1)}=\binom{0}{0}+0.55\binom{-0.6}{-1.0}=\binom{-0.33}{-0.55}, \\
s^{(1)}=\left(\begin{array}{l}
1 \\
2 \\
2 \\
4
\end{array}\right)+0.55\left(\begin{array}{r}
0.6 \\
3.6 \\
1.6
\end{array}\right)=\left(\begin{array}{l}
1.33 \\
1.78 \\
3.98 \\
4.88
\end{array}\right)
\end{aligned}
$$

(The numerical values of $x^{(1)}, y^{(1)}$ and $s^{(1)}$ are not required.)
4. (See the course material.)
5. The basis corresponding to \widetilde{y} and \widetilde{s} is $\mathcal{B}=\{1,2\}$. If b_{1} is changed, the basis remains dual feasible. Hence, it is suitable to use the dual simplex method starting with this dual basic feasible solution. Let $y=\widetilde{y}$ and $s=\widetilde{s}$.
The basic variables are given by

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{1}{2}
$$

which gives $x_{1}=-1, x_{2}=2$. As $x_{1}<0$, the dual solution is not optimal. Consequently, since $x_{2}<0, x_{2}$ becomes nonbasic, and as x_{1} is the first basic variable, the step in the y-direction is given by

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\binom{q_{1}}{q_{2}}=\binom{-1}{0}
$$

which gives $q_{1}=-1, q_{2}=1$. With $y \leftarrow y+\alpha q$, dual feasibility requires $s \leftarrow s+\alpha \eta$, with $A^{T} q+\eta=0$ and $s+\alpha \eta \geq 0$. Consequently, the nonnegativity of s requires $s-\alpha A^{T} q \geq 0$, i.e.,

$$
\left(\begin{array}{l}
0 \\
0 \\
2 \\
2
\end{array}\right)-\alpha\left(\begin{array}{r}
-1 \\
0 \\
1 \\
2
\end{array}\right) \geq\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

The maximum value of α is given by $\alpha_{\max }=1$ making component 4 of $s-\alpha A^{T} q$ zero, so that the new basis becomes $\mathcal{B}=\{2,4\}$. The basic variables are given by

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 3
\end{array}\right)\binom{x_{2}}{x_{4}}=\binom{1}{2}
$$

which gives $x_{2}=1 / 2, x_{4}=1 / 2$. As $x \geq 0$, an optimal solution has been obtained. Together with $y+\alpha_{\max } q$ and $s-\alpha_{\max } A^{T} q$ the primal and dual optimal solutions are given by

$$
x=\left(\begin{array}{c}
0 \\
\frac{1}{2} \\
0 \\
\frac{1}{2}
\end{array}\right), \quad y=\binom{0}{0} \quad \text { and } \quad s=\left(\begin{array}{c}
1 \\
0 \\
1 \\
0
\end{array}\right) .
$$

