1. (a) There is at least one optimal solution, which is integer valued. However, if the optimal solution is nonunique, there will also be noninteger optimal solutions.
(b) Since \widehat{X} is nonnegative, summation of rows and columns of \widehat{X} shows that \widehat{X} is feasible. If we let the matrix S denote the dual slacks, i.e., $s_{i j}=c_{i j}-\widehat{u}_{i}-\widehat{v}_{j}$, then

$$
S=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

Consequently, S has nonnegative components. In addition, complementarity holds, since $\widehat{x}_{i j} s_{i j}=0, i=1,2, j=1,2,3$. This means that we have optimal solutions to the two problems.
(c) The nonzero components of the given W correspond to strictly positive components of \widehat{X}. Since W has row sum as well as column sum zero, it follows that $\widehat{X}+\alpha W$ is optimal as long as $\widehat{X}+\alpha W$ is nonnegative. The most limiting positive and negative values of α are -0.5 and 1.5 respectively. These values correspond to two integer valued optimal solutions:

$$
\widehat{X}-0.5 W=\left(\begin{array}{ccc}
6 & 2 & 0 \\
0 & 3 & 2
\end{array}\right) \quad \text { and } \quad \widehat{X}+1.5 W=\left(\begin{array}{ccc}
6 & 0 & 2 \\
0 & 5 & 0
\end{array}\right)
$$

(d) Since \widehat{X} is not an extreme point, it is not provided as a solution by the simplex method.
2. (See the course material.)
3. (a) With $X=\operatorname{diag}(x)$ and $S=\operatorname{diag}(s)$, the linear system of equations takes the form

$$
\left(\begin{array}{ccc}
A & 0 & 0 \\
0 & A^{T} & I \\
S & 0 & X
\end{array}\right)\left(\begin{array}{c}
\Delta x \\
\Delta y \\
\Delta s
\end{array}\right)=-\left(\begin{array}{c}
A x-b \\
A^{T} y+s-c \\
X S e-\mu e
\end{array}\right)
$$

for a suitable value of the barrier parameter μ. We may for example let $\mu=$ $x^{T} s / n=5$. Insertion of numerical values gives

$$
\left(\begin{array}{rrrrrrrrrr}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 \\
0 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 4 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{r}
\Delta x_{1} \\
\Delta x_{2} \\
\Delta x_{3} \\
\Delta x_{4} \\
\Delta y_{1} \\
\Delta y_{2} \\
\Delta s_{1} \\
\Delta s_{2} \\
\Delta s_{3} \\
\Delta s_{4}
\end{array}\right)=\left(\begin{array}{r}
-6 \\
2 \\
-1 \\
-1 \\
-1 \\
-3 \\
1 \\
-1 \\
-1 \\
1
\end{array}\right)
$$

(b) We would compute $x^{(1)}, y^{(1)}$ and $s^{(1)}$ as $x^{(1)}=x^{(0)}+\alpha \Delta x^{(0)}, y^{(1)}=y^{(0)}+$ $\alpha \Delta y^{(0)}, s^{(1)}=s^{(0)}+\alpha \Delta s^{(0)}$, where α is a positive steplength. In a pure Newton step, $\alpha=1$, but we must also maintain $x^{(1)}>0$ and $s^{(1)}>0$. We may compute $\alpha_{\max }$ as the largest step α for which $x+\alpha \Delta x \geq 0$ and $s+\alpha \Delta s \geq 0$. We may then let $\alpha=\min \left\{1,0.99 \alpha_{\max }\right\}$ to ensure positivity of $x^{(1)}>0$ and $s^{(1)}>0$. (In order to get a convergent method, some additional condition on α ensuring proximity to the barrier trajectory may need to be imposed.)
4. (a) For a given nonnegative u, the resulting Lagrangian relaxed problem gives the dual objective function $\varphi(u)$ as

$$
\begin{aligned}
\varphi(u)=-8 u+\quad \text { minimize } & (3 u-5) x_{1}+(6 u-7) x_{2}+(7 u-10) x_{3} \\
\text { subject to } & -x_{1}-2 x_{2}-3 x_{3} \geq-3 \\
& x_{j} \in\{0,1\}, \quad j=1, \ldots, n
\end{aligned}
$$

There are only five feasible solutions to the relaxed problem, $\left(\begin{array}{lll}0 & 0 & 0\end{array}\right)^{T},\left(\begin{array}{ll}1 & 0\end{array}\right)^{T}$, $\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)^{T},\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)^{T}$ and $\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)^{T}$. By enumerating these solutions, we obtain

$$
\varphi(u)=\min \{-8 u,-5 u-5,-2 u-7,-u-10, u-12\} .
$$

The dual problem may be illustrated graphically as:

It can be seen that the optimal solution is 1 and the optimal value is -11 .
(b) Since the Lagrangian dual gives a relaxation whose bound is always at least as good as the linear programming relaxation, the optimal value of the linear programming relaxation problem cannot be greater than -11 .
5. (a) For the given cut patterns, we obtain

$$
B=\left(\begin{array}{ccc}
4 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right), \quad x_{B}=B^{-1} b=\left(\begin{array}{c}
15 \\
25 \\
50
\end{array}\right), \quad y=B^{-T} e=\left(\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right)
$$

with $e=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)^{T}$. As $y \geq 0$ no slack variables enters the basis.

The subproblem is given by

$$
\begin{aligned}
1-\frac{1}{4} \text { maximize } & \alpha_{1}+2 \alpha_{2}+4 \alpha_{3} \\
\text { subject to } & 3 \alpha_{1}+5 \alpha_{2}+9 \alpha_{3} \leq 12 \\
& \alpha_{i} \geq 0, \text { integer, } \quad i=1,2,3
\end{aligned}
$$

We may enumerate the feasible solutions for this small problem to conclude that the optimal value of the subproblem is $\alpha^{*}=\left(\begin{array}{lll}1 & 0 & 1\end{array}\right)^{T}$ with optimal value $-1 / 4$. Hence, $a_{4}=\left(\begin{array}{lll}1 & 0 & 1\end{array}\right)^{T}$ and the maximum step is given by

$$
0 \leq x=B^{-1} b-\eta B^{-1} a_{4}=\left(\begin{array}{c}
15 \\
25 \\
50
\end{array}\right)-\eta\left(\begin{array}{c}
\frac{1}{4} \\
0 \\
1
\end{array}\right)
$$

Hence, $\eta_{\max }=50$ and x_{3} leaves the basis, so that the basic variables are given by $x_{1}=5 / 2, x_{2}=25$ and $x_{4}=50$. The reduced costs are given by

$$
y=B^{-T} e=\left(\begin{array}{lll}
4 & 0 & 0 \\
0 & 2 & 0 \\
1 & 0 & 1
\end{array}\right)^{-1}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

which gives $y_{1}=1 / 4, y_{2}=1 / 2$ and $y_{3}=3 / 4$.
The subproblem is given by

$$
\begin{aligned}
1-\frac{1}{4} \text { maximize } & \alpha_{1}+2 \alpha_{2}+3 \alpha_{3} \\
\text { subject to } & 3 \alpha_{1}+5 \alpha_{2}+9 \alpha_{3} \leq 12 \\
& \alpha_{i} \geq 0, \text { integer, } \quad i=1,2,3
\end{aligned}
$$

We may enumerate the feasible solutions for this small problem to conclude that the optimal value is zero, so that the linear program has been solved. The optimal solution is $x_{1}=5 / 2, x_{2}=25$ and $x_{4}=50$, with $a_{1}=\left(\begin{array}{ll}4 & 0\end{array}\right)^{T}$, $a_{2}=\left(\begin{array}{lll}0 & 2 & 0\end{array}\right)^{T}$ and $a_{4}=\left(\begin{array}{lll}1 & 0 & 1\end{array}\right)^{T}$.
(b) The solution given by the linear programming relaxation may be rounded up to give a feasible solution \widetilde{x} to the original problem. In this case, $\widetilde{x}_{1}=3$, $\widetilde{x}_{2}=25$ and $\widetilde{x}_{4}=50$. This gives a total of $78 W$-rolls. The linear programming relaxation gives $77.5 W$-rolls, which is a lower bound for the original problem. Since the number of W-rolls is integer valued, we conclude that 78 is a lower bound, so that \widetilde{x} in fact is an optimal solution to the original problem. The optimal solution is therefore to use 78 W -rolls, with 3 rolls cut according to pattern $\left(\begin{array}{lll}4 & 0 & 0\end{array}\right)^{T}, 25$ rolls cut according to pattern $\left(\begin{array}{lll}0 & 2 & 0\end{array}\right)^{T}$ and 50 rolls cut according to pattern $\left(\begin{array}{lll}1 & 0 & 1\end{array}\right)^{T}$.
(Note that this is very special. In general one can not expect to obtain an optimal integer solution in this way.)

