

SF2812 Applied linear optimization, final exam Wednesday June 8 2016 8.00–13.00 Brief solutions

- 1. (a) There is at least one optimal solution, which is integer valued. However, if the optimal solution is nonunique, there will also be noninteger optimal solutions.
 - (b) Since \widehat{X} is nonnegative, summation of rows and columns of \widehat{X} shows that \widehat{X} is feasible. If we let the matrix S denote the dual slacks, i.e., $s_{ij} = c_{ij} \widehat{u}_i \widehat{v}_j$, then

$$S=\left(egin{array}{ccc} 0&0&0\ 1&0&0 \end{array}
ight).$$

Consequently, S has nonnegative components. In addition, complementarity holds, since $\hat{x}_{ij}s_{ij} = 0$, i = 1, 2, j = 1, 2, 3. This means that we have optimal solutions to the two problems.

(c) The nonzero components of the given W correspond to strictly positive components of \hat{X} . Since W has row sum as well as column sum zero, it follows that $\hat{X} + \alpha W$ is optimal as long as $\hat{X} + \alpha W$ is nonnegative. The most limiting positive and negative values of α are -0.5 and 1.5 respectively. These values correspond to two integer valued optimal solutions:

$$\widehat{X} - 0.5W = \begin{pmatrix} 6 & 2 & 0 \\ 0 & 3 & 2 \end{pmatrix}$$
 and $\widehat{X} + 1.5W = \begin{pmatrix} 6 & 0 & 2 \\ 0 & 5 & 0 \end{pmatrix}$.

- (d) Since \widehat{X} is not an extreme point, it is not provided as a solution by the simplex method.
- **2.** (See the course material.)
- **3.** (a) With X = diag(x) and S = diag(s), the linear system of equations takes the form

$$\begin{pmatrix} A & 0 & 0 \\ 0 & A^T & I \\ S & 0 & X \end{pmatrix} \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta s \end{pmatrix} = - \begin{pmatrix} Ax - b \\ A^Ty + s - c \\ XSe - \mu e \end{pmatrix},$$

for a suitable value of the barrier parameter μ . We may for example let $\mu = x^T s/n = 5$. Insertion of numerical values gives

- (b) We would compute $x^{(1)}$, $y^{(1)}$ and $s^{(1)}$ as $x^{(1)} = x^{(0)} + \alpha \Delta x^{(0)}$, $y^{(1)} = y^{(0)} + \alpha \Delta y^{(0)}$, $s^{(1)} = s^{(0)} + \alpha \Delta s^{(0)}$, where α is a positive steplength. In a pure Newton step, $\alpha = 1$, but we must also maintain $x^{(1)} > 0$ and $s^{(1)} > 0$. We may compute α_{\max} as the largest step α for which $x + \alpha \Delta x \ge 0$ and $s + \alpha \Delta s \ge 0$. We may then let $\alpha = \min\{1, 0.99\alpha_{\max}\}$ to ensure positivity of $x^{(1)} > 0$ and $s^{(1)} > 0$. (In order to get a convergent method, some additional condition on α ensuring proximity to the barrier trajectory may need to be imposed.)
- 4. (a) For a given nonnegative u, the resulting Lagrangian relaxed problem gives the dual objective function $\varphi(u)$ as

$$\varphi(u) = -8u + \text{ minimize } (3u - 5)x_1 + (6u - 7)x_2 + (7u - 10)x_3$$

subject to $-x_1 - 2x_2 - 3x_3 \ge -3,$
 $x_j \in \{0, 1\}, \quad j = 1, \dots, n.$

There are only five feasible solutions to the relaxed problem, $(0\ 0\ 0)^T$, $(1\ 0\ 0)^T$, $(0\ 1\ 0)^T$, $(0\ 0\ 1)^T$ and $(1\ 1\ 0)^T$. By enumerating these solutions, we obtain

$$\varphi(u) = \min\{-8u, -5u - 5, -2u - 7, -u - 10, u - 12\}.$$

The dual problem may be illustrated graphically as:

It can be seen that the optimal solution is 1 and the optimal value is -11.

- (b) Since the Lagrangian dual gives a relaxation whose bound is always at least as good as the linear programming relaxation, the optimal value of the linear programming relaxation problem cannot be greater than -11.
- **5.** (a) For the given cut patterns, we obtain

$$B = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad x_B = B^{-1}b = \begin{pmatrix} 15 \\ 25 \\ 50 \end{pmatrix}, \quad y = B^{-T}e = \begin{pmatrix} \frac{1}{4} \\ \frac{1}{2} \\ 1 \end{pmatrix},$$

with $e = (1 \ 1 \ 1)^T$. As $y \ge 0$ no slack variables enters the basis.

The subproblem is given by

$$1 - \frac{1}{4} \text{maximize} \quad \alpha_1 + 2\alpha_2 + 4\alpha_3$$

subject to
$$3\alpha_1 + 5\alpha_2 + 9\alpha_3 \le 12,$$
$$\alpha_i \ge 0, \text{ integer}, \quad i = 1, 2, 3$$

We may enumerate the feasible solutions for this small problem to conclude that the optimal value of the subproblem is $\alpha^* = (1 \ 0 \ 1)^T$ with optimal value -1/4. Hence, $a_4 = (1 \ 0 \ 1)^T$ and the maximum step is given by

$$0 \le x = B^{-1}b - \eta B^{-1}a_4 = \begin{pmatrix} 15\\25\\50 \end{pmatrix} - \eta \begin{pmatrix} \frac{1}{4}\\0\\1 \end{pmatrix}.$$

Hence, $\eta_{\text{max}} = 50$ and x_3 leaves the basis, so that the basic variables are given by $x_1 = 5/2$, $x_2 = 25$ and $x_4 = 50$. The reduced costs are given by

$$y = B^{-T}e = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix},$$

which gives $y_1 = 1/4$, $y_2 = 1/2$ and $y_3 = 3/4$. The subproblem is given by

> $1 - \frac{1}{4} \text{maximize} \quad \alpha_1 + 2\alpha_2 + 3\alpha_3$ subject to $3\alpha_1 + 5\alpha_2 + 9\alpha_3 \le 12,$ $\alpha_i \ge 0, \text{ integer}, \quad i = 1, 2, 3.$

We may enumerate the feasible solutions for this small problem to conclude that the optimal value is zero, so that the linear program has been solved. The optimal solution is $x_1 = 5/2$, $x_2 = 25$ and $x_4 = 50$, with $a_1 = (4 \ 0 \ 0)^T$, $a_2 = (0 \ 2 \ 0)^T$ and $a_4 = (1 \ 0 \ 1)^T$.

(b) The solution given by the linear programming relaxation may be rounded up to give a feasible solution \tilde{x} to the original problem. In this case, $\tilde{x}_1 = 3$, $\tilde{x}_2 = 25$ and $\tilde{x}_4 = 50$. This gives a total of 78 *W*-rolls. The linear programming relaxation gives 77.5 *W*-rolls, which is a lower bound for the original problem. Since the number of *W*-rolls is integer valued, we conclude that 78 is a lower bound, so that \tilde{x} in fact is an optimal solution to the original problem. The optimal solution is therefore to use 78 *W*-rolls, with 3 rolls cut according to pattern $(4 \ 0 \ 0)^T$, 25 rolls cut according to pattern $(0 \ 2 \ 0)^T$ and 50 rolls cut according to pattern $(1 \ 0 \ 1)^T$.

(Note that this is very special. In general one can not expect to obtain an optimal integer solution in this way.)