SF2812 Applied linear optimization, final exam
Monday March 132017 8.00-13.00
Brief solutions

1. (a) From the GAMS output file, the values of "VAR x" suggest $x=\left(\begin{array}{lll}2 & 1 & 0\end{array} 1\right)^{T}$, the marginal costs for "EQU cons" suggest $y=\left(\begin{array}{ll}2 & 1\end{array}\right)^{T}$, and the marginal costs for "VAR x" suggest $s=(00440)^{T}$. Insertion of numerical values gives $A x=b, A^{T} y+s=c, x \geq 0, s \geq 0$ and $x^{T} s=0$. Hence, the solutions are optimal to the respective problem.
(b) Both x_{3} and x_{4} are nonbasic variables. Consequently, a change of c_{3} from 2 to $2+\delta_{3}$ and a change of c_{4} from 3 to $3+\delta_{4}$ gives, for the same basis, $s_{3}=4+\delta_{3}$ and $s_{4}=4+\delta_{4}$, with other components of s, x and y unchanged. Consequently, it follows that the optimal solution is unchanged as long as the costs of x_{3} or x_{4} are not decreased more than 4 units. Hence, the solution is not at all sensitive to changes considered by AF. The computed optimal solution is optimal also considering the fluctuations. Therefore, there is no need for a stochastic programming model.
(c) Since $y_{1}=2$, the optimal value is expected to change with 2 per unit change of b_{1}.
2. (a) Insertion of numercial values gives $A \widehat{x}=b, A^{T} \widehat{y}+s=c$. In addition, $\widehat{x} \geq 0$, $\widehat{s} \geq 0$ and $\widehat{x}_{j} \widehat{s}_{j}=0, j=1, \ldots, 5$. Hence, the solutions are optimal to the primal and dual problems, respectively.
(b) The solution given by \widehat{x} corresponds to x_{1} and x_{2} being basic variables. Since $\widehat{s}_{3}=0$, it follows that x_{3} may enter the basis without changing the value of the objective function. Consequently, optimality is preserved. The corresponding direction is given by $p_{3}=1$ and

$$
\left(\begin{array}{ll}
3 & 2 \\
0 & 1
\end{array}\right)\binom{p_{1}}{p_{2}}=-\binom{1}{-1},
$$

which gives $p_{1}=-1$ and $p_{2}=1$. By setting $x_{B}+\alpha p_{B} \geq 0$, we obtain $\alpha_{\max }=1$. Consequently, new basic variables are $x_{2}=3$ and $x_{3}=2$.
We may compute y and s from $B^{T} y=c_{B}, s=c-A^{T} y$, i.e.,

$$
\left(\begin{array}{rr}
2 & 1 \\
1 & -1
\end{array}\right)\binom{y_{1}}{y_{2}}=\binom{3}{3}
$$

with solution $y=\left(\begin{array}{ll}2 & -1\end{array}\right)^{T}$, so that $s=c-A^{T} y=\left(\begin{array}{llll}0 & 0 & 0 & 3\end{array}\right)^{T}$. As $s \geq 0$, we have an optimal solution. In addition, since $s_{1}=0$ but $s_{4}>0$, it follows that it is only x_{1} that may enter the basis again without increasing the objective function value. This would give us \widehat{x} back. Consequently, there are only two optimal basic feasible solutions, \widehat{x} and $\left(\begin{array}{llll}0 & 2 & 1 & 0\end{array}\right)^{T}$. Therefore, the set of optimal solutions is given by the set of convex combinations of these points, i.e.,

$$
\left\{(1-\alpha)\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right)+\alpha\left(\begin{array}{l}
0 \\
2 \\
1 \\
0
\end{array}\right): 0 \leq \alpha \leq 1\right\} .
$$

By comparing to the given $x(\mu)$, it follows that $x(\mu)$ is close to the optimal solution given by $\alpha=0.5773$.
As the barrier trajectory avoids active constraints, $x(\mu)$ will converge to a basic feasible solution when $\mu \rightarrow 0$ only if the optimal solution is unique. This is not the case here.
3. (See the course material.)
4. (a) The dual objective $\varphi(v)$ is the optimal solution of

$$
\begin{gathered}
\operatorname{minimize}-x_{1}-4 x_{3}-x_{4}+v_{1}\left(x_{1}+x_{2}-1\right)+v_{2}\left(x_{3}+x_{4}-1\right) \\
\text { subject to } 4 x_{1}+7 x_{2}+6 x_{3}+5 x_{4} \leq 10, x_{j} \in\{0,1\}, j=1, \ldots, 4, \\
=-v_{1}-v_{2}-\text { maximize }\left(1-v_{1}\right) x_{1}-v_{1} x_{2}+\left(4-v_{2}\right) x_{3}+\left(1-v_{2}\right) x_{4} \\
\text { subject to } 4 x_{1}+7 x_{2}+6 x_{3}+5 x_{4} \leq 10 \\
x_{j} \in\{0,1\}, j=1, \ldots, 4
\end{gathered}
$$

In particular, for $v=\widehat{v}$, we obtain

$$
\begin{aligned}
\varphi(\widehat{v})=-3-\text { maximize }- & x_{2}+2 x_{3}-x_{4} \\
\text { subject to } & 4 x_{1}+7 x_{2}+6 x_{3}+5 x_{4} \leq 10 \\
& x_{j} \in\{0,1\}, j=1, \ldots, 4
\end{aligned}
$$

It follows that $x_{2}=0$ and $x_{4}=0$ in all optimal solutions, since the corresponding objective function coefficients are negative in the maximization problem. Hence, we obtain two optimal solutions, $x^{(1)}(\widehat{v})=\left(\begin{array}{llll}0 & 0 & 1 & 0\end{array}\right)^{T}$ and $x^{(2)}(\widehat{v})=\left(\begin{array}{llll}1 & 0 & 1 & 0\end{array}\right)^{T}$ with $\varphi(\widehat{v})=-5$.
(b) We obtain two subgradients $s^{(1)}$ and $s^{(2)}$ to φ at \widehat{v} by evaluating the relaxed constraints with reversed sign at $x^{(1)}(\widehat{v})$ and $x^{(2)}(\widehat{v})$ respectively, as

$$
\begin{aligned}
& s^{(1)}=-\binom{1-x_{1}^{(1)}(\widehat{v})-x_{2}^{(1)}(\widehat{v})}{1-x_{3}^{(1)}(\widehat{v})-x_{4}^{(1)}(\widehat{v})}=\binom{-1}{0}, \\
& s^{(2)}=-\binom{1-x_{1}^{(2)}(\widehat{v})-x_{2}^{(2)}(\widehat{v})}{1-x_{3}^{(2)}(\widehat{v})-x_{4}^{(2)}(\widehat{v})}=\binom{0}{0}
\end{aligned}
$$

(c) As $s^{(2)}=0$, it follows that \widehat{v} is optimal to the dual problem.
5. (a) The maximization inside the constraint, $\max _{v_{i} \in \mathcal{P}_{i}}\left\{v_{i}^{T} y\right\}$, is a linear program on the form
$\underset{v_{i} \in \mathbb{R}^{m}}{\operatorname{maximize}} y^{T} v_{i}$
subject to $C_{i}^{T} v_{i} \leq d_{i}$,
where y is fixed and v_{i} is the variable vector. The corresponding dual problem takes the form

$$
\begin{array}{cl}
\underset{z_{i} \in \mathbb{R}^{n}}{\operatorname{minimize}} & d_{i}^{T} z_{i} \\
\text { subject to } & C_{i} z_{i}=y \\
& z_{i} \geq 0
\end{array}
$$

By strong duality for linear programming, the optimal values of these two linear programs are identical. Consequently, the requirement $\max _{v_{i} \in \mathcal{P}_{i}}\left\{v_{i}^{T} y\right\} \leq c_{i}$ is equivalent to the existence of a $z_{i} \in \mathbb{R}^{n_{i}}$ such that

$$
\begin{aligned}
d_{i}^{T} z_{i} & \leq c_{i} \\
C_{i} z_{i} & =y \\
z_{i} & \geq 0
\end{aligned}
$$

We may therefore equivalently formulate $(R P)$ as a linear program on the form

$$
\begin{array}{lll}
\operatorname{maximize} & b^{T} y & \\
\text { subject to } & d_{i}^{T} z_{i} \leq c_{i}, & i=1, \ldots, n \tag{LPR}\\
& C_{i} z_{i}-y=0, & i=1, \ldots, n \\
& z_{i} \geq 0, & i=1, \ldots, n
\end{array}
$$

In order to derive the dual problem associated with $(L P R)$, we may introduce nonnegative Lagrange multipliers $\alpha_{i} \in \mathbb{R}$, associated with the constraints $c_{i}-$ $d_{i}^{T} z_{i} \geq 0$, and multipliers $\beta_{i} \in \mathbb{R}_{i}^{n}$, associated with the constraints $C_{i} z_{i}-y=0$. Lagrangian relaxation then gives the dual objective function

$$
\begin{aligned}
& \max _{y, z_{1} \geq 0, \ldots, z_{n} \geq 0}\left\{b^{T} y+\sum_{i=1}^{n} \alpha_{i}\left(c_{i}-d_{i}^{T} z_{i}\right)+\sum_{i=1}^{n} \beta_{i}^{T}\left(C_{i} z_{i}-y\right)\right\} \\
= & \sum_{i=1}^{n} c_{i} \alpha_{i}+\max _{y}\left\{\left(b-\sum_{i=1}^{n} \beta_{i}\right)^{T} y\right\}+\sum_{i=1}^{n} \max _{z_{i} \geq 0}\left\{\left(C_{i}^{T} \beta_{i}-d_{i} \alpha_{i}\right)^{T} z_{i}\right\} \\
= & \begin{cases}\sum_{i=1}^{n} c_{i} \alpha_{i} & \text { if } C_{i}^{T} \beta_{i}-d_{i} \alpha_{i} \leq 0, i=1, \ldots, n, \\
-\infty & \text { otherwise. }\end{cases}
\end{aligned}
$$

The dual problem therefore takes the form

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i=1}^{n} c_{i} \alpha_{i} \\
\text { subject to } & \sum_{i=1}^{n} \beta_{i}=b, \\
& C_{i}^{T} \beta_{i}-d_{i} \alpha_{i} \leq 0, \quad i=1, \ldots, n \\
& \alpha_{i} \geq 0,
\end{array} \quad i=1, \ldots, n .
$$

(b) For this particular case, the constraint $C_{i}^{T} \beta_{i}-d_{i} \alpha_{i} \leq 0$ takes the form

$$
\binom{I}{-I} \beta_{i}-\binom{A_{i}}{-A_{i}} \alpha_{i} \leq\binom{ 0}{0}
$$

which is equivalent to $\beta_{i}=A_{i} \alpha_{i}$. We may therefore eliminate $\beta_{i}, i=1, \ldots, n$, and write the dual problem as

$$
\begin{array}{lll}
& \text { minimize } & \sum_{i=1}^{n} c_{i} \alpha_{i} \\
(D L P R) & \text { subject to } & \sum_{i=1}^{n} A_{i} \alpha_{i}=b, \\
& \alpha_{i} \geq 0,
\end{array} \quad i=1, \ldots, n,
$$

which is the dual problem associated with $(L P)$. This is what we would expect, as in this case $(R P)$ is equivalent to $(L P)$.

