
SF2812 Applied linear optimization, final exam
Monday March 13 2017 8.00–13.00

Brief solutions

1. (a) From the GAMS output file, the values of “VAR x” suggest x = (2 1 0 0 1)T ,
the marginal costs for “EQU cons” suggest y = (2 1 − 1)T , and the marginal
costs for “VAR x” suggest s = (0 0 4 4 0)T . Insertion of numerical values gives
Ax = b, ATy + s = c, x ≥ 0, s ≥ 0 and xTs = 0. Hence, the solutions are
optimal to the respective problem.

(b) Both x3 and x4 are nonbasic variables. Consequently, a change of c3 from
2 to 2 + δ3 and a change of c4 from 3 to 3 + δ4 gives, for the same basis,
s3 = 4 + δ3 and s4 = 4 + δ4, with other components of s, x and y unchanged.
Consequently, it follows that the optimal solution is unchanged as long as the
costs of x3 or x4 are not decreased more than 4 units. Hence, the solution is not
at all sensitive to changes considered by AF. The computed optimal solution
is optimal also considering the fluctuations. Therefore, there is no need for a
stochastic programming model.

(c) Since y1 = 2, the optimal value is expected to change with 2 per unit change
of b1.

2. (a) Insertion of numercial values gives Ax̂ = b, ATŷ + s = c. In addition, x̂ ≥ 0,
ŝ ≥ 0 and x̂j ŝj = 0, j = 1, . . . , 5. Hence, the solutions are optimal to the primal
and dual problems, respectively.

(b) The solution given by x̂ corresponds to x1 and x2 being basic variables. Since
ŝ3 = 0, it follows that x3 may enter the basis without changing the value of the
objective function. Consequently, optimality is preserved. The corresponding
direction is given by p3 = 1 and(

3 2

0 1

)(
p1

p2

)
= −

(
1

−1

)
,

which gives p1 = −1 and p2 = 1. By setting xB +αpB ≥ 0, we obtain αmax = 1.
Consequently, new basic variables are x2 = 3 and x3 = 2.

We may compute y and s from BTy = cB, s = c−ATy, i.e.,(
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with solution y = (2 − 1)T , so that s = c− ATy = (0 0 0 3)T . As s ≥ 0, we
have an optimal solution. In addition, since s1 = 0 but s4 > 0, it follows that
it is only x1 that may enter the basis again without increasing the objective
function value. This would give us x̂ back. Consequently, there are only two
optimal basic feasible solutions, x̂ and (0 2 1 0)T . Therefore, the set of
optimal solutions is given by the set of convex combinations of these points,
i.e., (1− α)
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By comparing to the given x(µ), it follows that x(µ) is close to the optimal
solution given by α = 0.5773.

As the barrier trajectory avoids active constraints, x(µ) will converge to a basic
feasible solution when µ→ 0 only if the optimal solution is unique. This is not
the case here.

3. (See the course material.)

4. (a) The dual objective ϕ(v) is the optimal solution of

minimize −x1 − 4x3 − x4 + v1(x1 + x2 − 1) + v2(x3 + x4 − 1)

subject to 4x1 + 7x2 + 6x3 + 5x4 ≤ 10, xj ∈ {0, 1}, j = 1, . . . , 4,

= −v1 − v2 −maximize (1− v1)x1 − v1x2 + (4− v2)x3 + (1− v2)x4
subject to 4x1 + 7x2 + 6x3 + 5x4 ≤ 10,

xj ∈ {0, 1}, j = 1, . . . , 4.

In particular, for v = v̂, we obtain

ϕ(v̂) = −3−maximize − x2 + 2x3 − x4
subject to 4x1 + 7x2 + 6x3 + 5x4 ≤ 10,

xj ∈ {0, 1}, j = 1, . . . , 4.

It follows that x2 = 0 and x4 = 0 in all optimal solutions, since the cor-
responding objective function coefficients are negative in the maximization
problem. Hence, we obtain two optimal solutions, x(1)(v̂) = (0 0 1 0)T and
x(2)(v̂) = (1 0 1 0)T with ϕ(v̂) = −5.

(b) We obtain two subgradients s(1) and s(2) to ϕ at v̂ by evaluating the relaxed
constraints with reversed sign at x(1)(v̂) and x(2)(v̂) respectively, as

s(1) = −
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)
=

(
−1

0

)
,

s(2) = −

(
1− x(2)1 (v̂)− x(2)2 (v̂)

1− x(2)3 (v̂)− x(2)4 (v̂)

)
=

(
0

0

)
.

(c) As s(2) = 0, it follows that v̂ is optimal to the dual problem.

5. (a) The maximization inside the constraint, maxvi∈Pi{vTi y}, is a linear program on
the form

maximize
vi∈IRm

yT vi

subject to CT
i vi ≤ di,
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where y is fixed and vi is the variable vector. The corresponding dual problem
takes the form

minimize
zi∈IRni

dTi zi

subject to Cizi = y,
zi ≥ 0.

By strong duality for linear programming, the optimal values of these two linear
programs are identical. Consequently, the requirement maxvi∈Pi{vTi y} ≤ ci is
equivalent to the existence of a zi ∈ IRni such that

dTi zi ≤ ci,
Cizi = y,

zi ≥ 0.

We may therefore equivalently formulate (RP ) as a linear program on the form

(LPR)

maximize bTy

subject to dTi zi ≤ ci, i = 1, . . . , n,
Cizi − y = 0, i = 1, . . . , n,
zi ≥ 0, i = 1, . . . , n.

In order to derive the dual problem associated with (LPR), we may introduce
nonnegative Lagrange multipliers αi ∈ IR, associated with the constraints ci −
dTi zi ≥ 0, and multipliers βi ∈ IRn

i , associated with the constraints Cizi−y = 0.
Lagrangian relaxation then gives the dual objective function
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=

{∑n
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−∞ otherwise.

The dual problem therefore takes the form

(DLPR)

minimize
∑n

i=1 ciαi

subject to
∑n

i=1 βi = b,
CT
i βi − diαi ≤ 0, i = 1, . . . , n,

αi ≥ 0, i = 1, . . . , n.

(b) For this particular case, the constraint CT
i βi − diαi ≤ 0 takes the form(
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which is equivalent to βi = Aiαi. We may therefore eliminate βi, i = 1, . . . , n,
and write the dual problem as

(DLPR)

minimize
∑n

i=1 ciαi

subject to
∑n

i=1Aiαi = b,
αi ≥ 0, i = 1, . . . , n,

which is the dual problem associated with (LP ). This is what we would expect,
as in this case (RP ) is equivalent to (LP ).


