1. (a) A solution \widetilde{x} and Lagrange multiplier vector \widetilde{y} associated with $\left(P_{\mu}\right)$ also solve the primal-dual nonlinear equations. Therefore,

$$
x(\mu)=\widetilde{x} \approx\left(\begin{array}{l}
1.9906 \\
0.0010 \\
0.9956 \\
0.9993 \\
0.0005 \\
0.0003
\end{array}\right), \quad y(\mu)=\widetilde{y} \approx\left(\begin{array}{r}
1.9987 \\
-0.9993 \\
0.9992
\end{array}\right)
$$

Finally, we may obtain $s(\mu)$ from $s_{j}(\mu)=\mu / x_{j}(\mu), j=1, \ldots, 6$. From the hint, it follows that

$$
s(\mu) \approx\left(\begin{array}{l}
0.0005 \\
1.0064 \\
0.0010 \\
0.0010 \\
2.0040 \\
3.0045
\end{array}\right)
$$

(b) We expect the solutions to be in the order of 10^{-3} away from an optimal solution. Therefore, rounding gives

$$
x=\left(\begin{array}{l}
2 \\
0 \\
1 \\
1 \\
0 \\
0
\end{array}\right), \quad y=\left(\begin{array}{r}
2 \\
-1 \\
1
\end{array}\right), \quad s=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
2 \\
3
\end{array}\right)
$$

We have $A x=b, A^{T} y+s=c, x \geq 0, s \geq 0$ and $x^{T} s=0$. Hence, the solutions are optimal to the respective problem.
(c) The computed solution is a basic feasible solution. In addition, since strict complementarity holds, the solution is unique. Consequently, the simplex method would compute the same solution.
2. (a) The simplex multipliers are given by

$$
\left(\begin{array}{rr}
1 & 2 \\
-1 & 0
\end{array}\right)\binom{y_{1}}{y_{2}}=\binom{2}{0}
$$

which gives $y_{1}=0, y_{2}=1$. The reduced costs are then given by

$$
\left(\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3} \\
s_{4}
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
0 \\
0
\end{array}\right)-\left(\begin{array}{rr}
1 & -1 \\
1 & 2 \\
-1 & 0 \\
0 & -1
\end{array}\right)\binom{0}{1}=\left(\begin{array}{l}
2 \\
0 \\
0 \\
1
\end{array}\right)
$$

This is a dual feasibls solution, because $s \geq 0$.
(b) The corresponding basic variables are given by

$$
\left(\begin{array}{rr}
1 & -1 \\
2 & 0
\end{array}\right)\binom{x_{2}}{x_{3}}=\binom{4}{2}
$$

which gives $x_{2}=1, x_{3}=-3$.
As $x_{3}<0$, the dual solution is not optimal. If q denotes the step in the y direction and η denotes the step in the s-direction, dual feasibility requires $A^{T} q+\eta=0$. Consequently, since $x_{3}<0, x_{3}$ becomes nonbasic, and we obtain

$$
\eta_{B}=\binom{\eta_{2}}{\eta_{3}}=\binom{0}{1}
$$

. The step in the y-direction is given by $B^{T} q=-\eta_{B}$, i.e.,

$$
\left(\begin{array}{rr}
1 & 2 \\
-1 & 0
\end{array}\right)\binom{q_{1}}{q_{2}}=\binom{0}{-1}
$$

which gives $q_{1}=1, q_{2}=-1 / 2$. With $y \leftarrow y+\alpha q$, dual feasibility requires $s \leftarrow s+\alpha \eta$, with $A^{T} q+\eta=0$ and $s+\alpha \eta \geq 0$. Consequently, the nonnegativity of s requires $s-\alpha A^{T} q \geq 0$, i.e.,

$$
\left(\begin{array}{l}
2 \\
0 \\
0 \\
1
\end{array}\right)-\alpha\left(\begin{array}{r}
\frac{3}{2} \\
0 \\
-1 \\
\frac{1}{2}
\end{array}\right) \geq\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

The maximum value of α is given by $\alpha_{\max }=4 / 3$ making component 1 of $s-\alpha A^{T} q$ zero, so that the new basis becomes $\mathcal{B}=\{1,2\}$. The basic variables are given by

$$
\left(\begin{array}{rr}
1 & 1 \\
-1 & 2
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{4}{2}
$$

which gives $x_{1}=2, x_{2}=2$. As $x \geq 0$, an optimal solution has been obtained. Together with $y+\alpha_{\max } q$ and $s-\alpha_{\max } A^{T} q$ the primal and dual optimal solutions are given by

$$
x=\left(\begin{array}{l}
2 \\
2 \\
0 \\
0
\end{array}\right), \quad y=\binom{\frac{4}{3}}{\frac{1}{3}} \quad \text { and } \quad s=\left(\begin{array}{c}
0 \\
0 \\
\frac{4}{3} \\
\frac{1}{3}
\end{array}\right)
$$

3. (See the course material.)
4. (a) We have

$$
\begin{array}{rll}
\varphi(u)=u- & \text { maximize } & (3+u) x_{1}+(4+u) x_{2}+(3+u) x_{3} \\
& \text { subject to } & x_{1}+2 x_{2}+3 x_{3} \leq 2, \\
& x_{j} \geq 0, x_{j} \text { integer, } \quad j=1, \ldots, 3
\end{array}
$$

For this small problem, we may enumerate the feasible solutions. They are (0 $\left.0 \begin{array}{ll}0\end{array}\right)^{T},\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)^{T},\left(\begin{array}{lll}2 & 0 & 0\end{array}\right)^{T}$, and $\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)^{T}$. Hence,

$$
\varphi(u)=u-\max \{0,3+u, 6+2 u, 4+u\}
$$

Consequently, $\varphi(u)=u$ for $u \leq-4, \varphi(u)=-4$ for $-4 \leq u \leq-2$ and $\varphi(u)=$ $-6-2 u$ for $u \geq-2$. The corresponding optimal solutions to the problem that defines $\varphi(u)$ are $x(u)=\left(\begin{array}{lll}0 & 0 & 0\end{array}\right)^{T}$ for $u \leq-4, x(u)=\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)^{T}$ for $-4 \leq u \leq-2$ and $x(u)=\left(\begin{array}{lll}2 & 0 & 0\end{array}\right)^{T}$ for $u \geq-2$. (The optimal solution is nonunique for $u=-4$ and $u=-2$.)
(b) The dual problem is defined as
(D) $\underset{u \in \mathbb{R}}{\operatorname{maximize}} \quad \varphi(u)$
subject to $\quad u \geq 0$.
Consequently, it is only $u \geq 0$ that is considered, and for these values of u, we have a relaxation. We do not consider $u<0$.
(c) Since $\varphi(u)=-6-2 u$ for $u \geq-2$, the dual problem takes the form

$$
\begin{array}{ll}
\underset{u \in \mathbb{R}}{\operatorname{maximize}} & -6-2 u \tag{D}\\
\text { subject to } & u \geq 0
\end{array}
$$

The optimal solution is given by $u^{*}=0$ with $\varphi\left(u^{*}\right)=-6$. By inspection, it has been found that $x=\left(\begin{array}{lll}2 & 0 & 0\end{array}\right)^{T}$ is optimal to $(I P)$ so that optval $(I P)=-6$. Hence, the duality gap is zero.
5. (a) For the given cut patterns, we obtain

$$
B=\left(\begin{array}{ccc}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right), \quad x_{B}=B^{-1} b=\left(\begin{array}{c}
20 \\
25 \\
40
\end{array}\right), \quad y=B^{-T} e=\left(\begin{array}{c}
\frac{1}{3} \\
\frac{1}{2} \\
1
\end{array}\right)
$$

with $e=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)^{T}$. As $y \geq 0$ no slack variables enters the basis.
The subproblem is given by

$$
\begin{aligned}
1-\quad \frac{1}{6} \text { maximize } & 2 \alpha_{1}+3 \alpha_{2}+6 \alpha_{3} \\
\text { subject to } & 3 \alpha_{1}+5 \alpha_{2}+9 \alpha_{3} \leq 11 \\
& \alpha_{i} \geq 0, \text { integer, } \quad i=1,2,3
\end{aligned}
$$

We may enumerate the feasible solutions for this small problem to conclude that the optimal value of the subproblem is $\alpha^{*}=\left(\begin{array}{lll}2 & 1 & 0\end{array}\right)^{T}$ with optimal value $-1 / 6$. Hence, $a_{4}=\left(\begin{array}{lll}2 & 1 & 0\end{array}\right)^{T}$ and the maximum step is given by

$$
0 \leq x=B^{-1} b-\eta B^{-1} a_{4}=\left(\begin{array}{c}
20 \\
25 \\
40
\end{array}\right)-\eta\left(\begin{array}{c}
\frac{2}{3} \\
\frac{1}{2} \\
0
\end{array}\right)
$$

Hence, $\eta_{\max }=30$ and x_{1} leaves the basis, so that the basic variables are given by $x_{2}=10, x_{3}=40$ and $x_{4}=30$. The reduced costs are given by

$$
y=B^{-T} e=\left(\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)^{-1}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

which gives $y_{1}=1 / 4, y_{2}=1 / 2$ and $y_{3}=1$.
The subproblem is given by

$$
\begin{aligned}
& 1-\frac{1}{4} \text { maximize } \quad \alpha_{1}+2 \alpha_{2}+4 \alpha_{3} \\
& \text { subject to } 3 \alpha_{1}+5 \alpha_{2}+9 \alpha_{3} \leq 11 \text {, } \\
& \alpha_{i} \geq 0 \text {, integer, } \quad i=1,2,3 \text {. }
\end{aligned}
$$

We may enumerate the feasible solutions for this small problem to conclude that the optimal value is zero, so that the linear program has been solved. The optimal solution is $x_{2}=10, x_{3}=40$ and $x_{4}=30$, with $a_{2}=\left(\begin{array}{ll}0 & 2\end{array}\right)^{T}$, $a_{3}=\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)^{T}$ and $a_{4}=\left(\begin{array}{lll}2 & 1 & 0\end{array}\right)^{T}$.
(b) The solution given by the linear programming relaxation happens to be integer valued. This means that we have solved the original problem as well. The optimal solution is to use $80 W$-rolls, with 10 rolls cut according to pattern $\left(\begin{array}{ll}0 & 2\end{array}\right)^{T}$, 40 rolls cut according to pattern $\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)^{T}$ and 30 rolls cut according to pattern $\left(\begin{array}{lll}2 & 1 & 0\end{array}\right)^{T}$.
(Note that this is very special. In general one can not expect to obtain an optimal integer solution in this way.)

