SF2812 Applied linear optimization, final exam
 Tuesday June 52018 14.00-19.00
 Brief solutions

1. (a) Since $\widetilde{y}, \widetilde{s}$ is a feasible solution to $(D L P)$ and $(D L P)$ is a maximization problem, $b^{T} \widetilde{y}$ is a lower bound for optval $(D L P)$.
(b) By strong duality for linear programming, the optimal values of ($P L P$) and $(D L P)$ are equal, if both problems are feasible. Therefore, $b^{T} \widetilde{y}$ is a lower bound for optval $(P L P)$. There is no implication that optval $(P L P)<\infty$ by existence of dual feasible solution.
(c) It holds that $\widetilde{y}+\alpha \eta, \widetilde{s}+\alpha q$ is feasible for all $\alpha \geq 0$, since $A^{T}(\widetilde{y}+\alpha \eta)+\widetilde{s}+\alpha q=c$ and $\widetilde{s}+\alpha q \geq 0$ for $\alpha \geq 0$. Since $b^{T}(y+\alpha \eta)$ tends to infinity as $\alpha \rightarrow \infty$, we conclude that optval $(P L P)=\operatorname{optval}(D L P)=\infty$.
(d) If \widetilde{x} is feasible to $(P L P)$ and $\widetilde{y}, \widetilde{s}$ is feasible to $(D L P)$, it holds that $\widetilde{x}^{T} \widetilde{s}=$ $c^{T} \widetilde{x}-b^{T} \widetilde{y}$. Therefore, by strong duality for linear programming, we must have $\widetilde{x}^{T \widetilde{s}}=0$ if the solutions are optimal to the respective problems. Therefore, if \widetilde{x} is optimal to $(P L P)$ and $\widetilde{x}^{T \widetilde{s}}=1$, it cannot hold that $\widetilde{y}, \widetilde{s}$ is optimal to $(D L P)$.
2. (a) The primal variables x are given by the values ("LEVEL") of "VAR x " as $x=$ $(021130)^{T}$. The dual variables y are given as the the marginal values of the constraints $A x=b$, i.e., the marginal values ("MARGINAL") of "EQU cons", $y=\left(\begin{array}{lll}1 & -1 & 1\end{array}-1\right)^{T}$. The dual variables s are given as the the marginal values of the constraints $x \geq 0$, i.e., the marginal values ("MARGINAL") of "VAR x", $s=(200005))^{T}$. The GAMS output file gives "MODEL STATUS Optimal", so the solutions are optimal.
(b) We see that components $2,3,4$, and 5 of x are positive. The corresponding columns of A form a triangular nonsingular basis matrix B. As long as the change in b gives the same optimal basis, strong duality shows that the change in optimal value is given by $b^{T} y+\delta e_{2}^{T} y+\delta e_{3}^{T} y$, i.e., 4 .
(c) We have $B x_{B}=b$. If b is changed to $b+\delta e_{2}+\delta e_{3}$, we get the corresponding primal solution x_{B}^{δ} by $B x_{B}^{\delta}=b+\delta e_{2}+\delta e_{3}$, i.e., $x_{B}^{\delta}=x_{B}+\delta p_{B}$, where $B p_{B}=e_{2}+e_{3}$. Insertion of numerical values gives

$$
\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & 0 \\
3 & 1 & 0 & 0 \\
4 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
p_{2} \\
p_{3} \\
p_{4} \\
p_{5}
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right) .
$$

The solution is given by $p_{B}=\left(\begin{array}{lll}0 & 1 & -1\end{array}\right)^{T}$. The bound on δ is then given by primal feasibility, i.e., $x_{B}+\delta p_{B} \geq 0$. Insertion of numerical values gives

$$
\left(\begin{array}{l}
2 \\
1 \\
1 \\
3
\end{array}\right)+\delta\left(\begin{array}{r}
0 \\
1 \\
0 \\
-1
\end{array}\right) \geq\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) .
$$

i.e.,

$$
\begin{aligned}
& 1+\delta \geq 0 \\
& 3-\delta \geq 0
\end{aligned}
$$

The bound is consequently given by $-1 \leq \delta \leq 3$. Therefore, the optimal value is given by 4 for $-1 \leq \delta \leq 3$.
3. (a) The optimality conditions of $\left(P_{\mu}\right)$ may be written as

$$
\begin{aligned}
c-\mu X^{-1} e & =A^{T} y \\
A x & =b
\end{aligned}
$$

in addition to $x>0$, where $X=\operatorname{diag}(x)$ and e is the vector of ones.
It is given that \widetilde{x} is feasible, so $A \widetilde{x}=b$ holds.
The matrix Z is a 4×2 matrix of full column rank such that $A Z=0$. Hence, since A is a 2×4 matrix of full row rank, the columns of Z form a basis for the nullspace of A. Therefore, the condition $c-\mu X^{-1} e=A^{T} y$ is equivalent to $Z^{T}\left(c-\mu X^{-1} e\right)=0$.
Evaluation gives $Z^{T} c=(31)^{T}$, so that

$$
Z^{T}\left(c-\mu \tilde{X}^{-1} e\right)=\binom{3}{1}-0.1 \cdot\binom{30}{10}=\binom{0}{0},
$$

verifying the second optimality condition for $\mu=0.1$. Finally, $\widetilde{x}>0$. Therefore, \widetilde{x} is optimal to $\left(P_{\mu}\right)$, i.e., $\widetilde{x}=x(\mu)$ for $\mu=0.1$.
(b) In case of strict complementarity, we expect $x(\mu)$ to differ by $O(\mu)$ from the optimal solution x^{*}. Since $\widetilde{x}=x(\mu)$ for $\mu=0.1$, we expect $O(\mu) \approx 0.1$, and therefore guess $\left.x^{*}=\left(\begin{array}{lll}0 & 5 & 0\end{array}\right)\right)^{T}$. This would correspond to x_{2} and x_{4} being basic variables. Then, $A_{B}^{T} y^{*}=c_{B}$ gives

$$
\left(\begin{array}{rr}
1 & 3 \\
0 & -1
\end{array}\right)\binom{y_{1}^{*}}{y_{2}^{*}}=\binom{1}{0},
$$

i.e., $y^{*}=\left(\begin{array}{ll}1 & 0\end{array}\right)^{T}$. Evaluating $s^{*}=c-A^{T} y^{*}$ gives $s^{*}=\left(\begin{array}{llll}1 & 0 & 1 & 0\end{array}\right)^{T}$. Since $s^{*} \geq 0$, we conclude that x^{*} is optimal to $(L P)$.
(c) The primal-dual system of nonlinear equations take the form

$$
\begin{array}{r}
A^{T} y+s-c=0, \\
A x-b=0, \\
X S e-\mu e=0 .
\end{array}
$$

They are equivalent to the optimality conditions of $\left(P_{\mu}\right)$. Therefore, we know $x(\mu)$, since $x(\mu)=\widetilde{x}$. We therefore need to find $s(\mu)$ from

$$
s_{i}(\mu)=\frac{\mu}{x_{i}(\mu)}=\frac{\mu}{\widetilde{x}_{i}}, \quad i=1, \ldots, 4
$$

and $y(\mu)$ from the relation

$$
c-s(\mu)=A^{T} y(\mu) .
$$

We get

$$
s(\mu) \approx 0.1\left(\begin{array}{r}
10.9135 \\
0.2032 \\
9.4925 \\
0.1014
\end{array}\right) \approx\left(\begin{array}{l}
1.0914 \\
0.0203 \\
0.9493 \\
0.0101
\end{array}\right)
$$

Finally,

$$
c-s(\mu) \approx\left(\begin{array}{l}
3 \\
1 \\
0 \\
0
\end{array}\right)-\left(\begin{array}{l}
1.0914 \\
0.0203 \\
0.9493 \\
0.0101
\end{array}\right) \approx\left(\begin{array}{r}
1.9086 \\
0.9797 \\
-0.9493 \\
-0.0101
\end{array}\right)
$$

so that

$$
\left(\begin{array}{r}
1.9087 \\
0.9797 \\
-0.9492 \\
-0.0101
\end{array}\right)=\left(\begin{array}{rr}
2 & 1 \\
1 & 3 \\
-1 & 0 \\
0 & -1
\end{array}\right)\binom{y_{1}(\mu)}{y_{2}(\mu)}
$$

The last two equations give

$$
y(\mu) \approx\binom{0.9492}{0.0101}
$$

Since $y(\mu)$ is unique, and we know there is a solution, we need not verify the first two equations.
(As a check, we note that $y(\mu)$ is close to y^{*} and $s(\mu)$ is close to s^{*}, by $O(\mu) \approx$ 0.1.)
4. (See the course material.)
5. (a) The given cut pattern give an initial basis in the master problem, corresponding to a basic feasible solution. We obtain

$$
B=\left(\begin{array}{ccc}
4 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right), \quad x_{B}=B^{-1} b=\left(\begin{array}{c}
15 \\
25 \\
40
\end{array}\right), \quad y=B^{-T} e=\left(\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right)
$$

with $e=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)^{T}$. As $y \geq 0$ no slack variables enter the basis.
The subproblem is given by

$$
\begin{aligned}
1-\frac{1}{4} \text { maximize } & \alpha_{1}+2 \alpha_{2}+4 \alpha_{3} \\
\text { subject to } & 3 \alpha_{1}+5 \alpha_{2}+9 \alpha_{3} \leq 12 \\
& \alpha_{i} \geq 0, \text { integer, } \quad i=1,2,3
\end{aligned}
$$

We may enumerate the feasible solutions for this small problem to conclude that the optimal value of the subproblem is $\alpha^{*}=\left(\begin{array}{lll}1 & 0 & 1\end{array}\right)^{T}$ with optimal value $-1 / 4$. Hence, $a_{4}=\left(\begin{array}{lll}1 & 0 & 1\end{array}\right)^{T}$ and the maximum step is given by

$$
0 \leq x=B^{-1} b-\eta B^{-1} a_{4}=\left(\begin{array}{c}
15 \\
25 \\
40
\end{array}\right)-\eta\left(\begin{array}{c}
\frac{1}{4} \\
0 \\
1
\end{array}\right)
$$

Hence, $\eta_{\max }=40$ and x_{3} leaves the basis, so that the basic variables are given by $x_{1}=5, x_{2}=25$ and $x_{4}=40$. The simplex multipliers y are given by

$$
y=B^{-T} e=\left(\begin{array}{ccc}
4 & 0 & 0 \\
0 & 2 & 0 \\
1 & 0 & 1
\end{array}\right)^{-1}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

which gives $y_{1}=1 / 4, y_{2}=1 / 2$ and $y_{3}=3 / 4$.
The subproblem is given by

$$
\begin{aligned}
1-\frac{1}{4} \text { maximize } & \alpha_{1}+2 \alpha_{2}+3 \alpha_{3} \\
\text { subject to } & 3 \alpha_{1}+5 \alpha_{2}+9 \alpha_{3} \leq 12 \\
& \alpha_{i} \geq 0, \text { integer, } \quad i=1,2,3
\end{aligned}
$$

We may enumerate the feasible solutions for this small problem to conclude that the optimal value is zero, so that the linear program has been solved. The optimal solution is $x_{1}=5, x_{2}=25$ and $x_{4}=40$, with $a_{1}=\left(\begin{array}{ll}4 & 0\end{array}\right)^{T}$, $a_{2}=\left(\begin{array}{lll}0 & 2 & 0\end{array}\right)^{T}$ and $a_{4}=\left(\begin{array}{lll}1 & 0 & 1\end{array}\right)^{T}$.
(b) The solution given by the linear programming relaxation happens to be integer valued. This means that we have solved the original problem as well. The optimal solution is to use $70 W$-rolls, with $5 W$-rolls cut according to pattern $\left(\begin{array}{lll}4 & 0 & 0\end{array}\right)^{T}, 25 W$-rolls cut according to pattern $\left(\begin{array}{lll}0 & 2 & 0\end{array}\right)^{T}$ and $40 W$-rolls cut according to pattern $\left(\begin{array}{ll}1 & 0\end{array}\right)^{T}$.
(Note that this is very special. In general one can not expect to obtain an optimal integer solution in this way.)

