SF2812 Applied linear optimization, final exam Tuesday October 232007 14.00-19.00

Examiner: Anders Forsgren, tel. 7907127.
Allowed tools: Pen/pencil, ruler and rubber; plus a calculator provided by the department.
Solution methods: Unless otherwise stated in the text, the problems should be solved by systematic methods, which do not become unrealistic for large problems. If you use methods other than what have been taught in the course, you must explain carefully.
Note! Personal number must be written on the title page. Write only one exercise per sheet. Number the pages and write your name on each page.
22 points are sufficient for a passing grade. For $20-21$ points, a completion to a passing grade may be made within three weeks from the date when the results of the exam are announced.

1. Let $(L P)$ be defined as

$$
\begin{array}{lll}
& \text { minimize } & c^{T} x \\
(L P) & \text { subject to } & A x=b, \\
& x \geq 0,
\end{array}
$$

where

$$
A=\left(\begin{array}{rrrrr}
3 & 4 & 1 & 0 & 0 \\
-1 & 2 & 0 & 1 & 0 \\
2 & 1 & 0 & 0 & 1
\end{array}\right), \quad b=\left(\begin{array}{l}
4 \\
3 \\
4
\end{array}\right) \quad \text { and } \quad c=\left(\begin{array}{lllll}
1 & 3 & 2 & 0 & 0
\end{array}\right)^{T} .
$$

(a) A person named AF has used GAMS to model and solve this problem. The GAMS input file can be found at the end of the exam. Unfortunately, AF has lost the GAMS output file. He does have a partial GAMS output file, which reads:
---- EQU cons

	LOWER	LEVEL	UPPER	MARGINAL		
i1	4.000	4.000	4.000	0.333		
i2	3.000	3.000	3.000	EPS		
i3	4.000	4.000	4.000	EPS		
			LOWER	LEVEL	UPPER	MARGINAL
---- EQU objfun						

			LOWER	LEVEL	UPPER	MARGINAL
	VAR obj		-INF	1.333	+INF	.
	VAR x					
	LOWER	LEVEL	UPPER	MARGINAL		
j1	.	1.333	+INF	.		
j2	.	.	+INF	1.667		
j3	.	.	+INF	1.667		
j4	-	4.333	+INF	.		
j5	.	1.333	+INF	.		

AF has run several versions of the problem, and he is not sure that this file is the one that corresponds to $(L P)$. Help AF by showing that this file gives the optimal solution to $(L P)$.
(b) The reason that AF has run several versions of the file is that the coefficients for x_{2} and x_{3} in the objective function are not very precise. Hence, in addition to wanting an optimal solution to $(L P)$, he also wants to know how sensitive the optimal solution is to changes in c_{2} and c_{3}. He knows that the fluctuations in c_{2} and c_{3} are at most one unit up and down. AF is not an optimization expert, and he has considered asking an expert about assistance in setting up a stochastic programming model. Give AF a qualified advice on what to do.
\qquad
(c) AF is also worried about b_{1}. He has been asked how sensitive the optimal value is to changes in b_{1}. Help AF to provide this information.
2. Consider the linear programming problem $(L P)$ and its dual $(D L P)$ defined as

$$
\begin{array}{llll}
\operatorname{minimize} & c^{T} x & \text { maximize } & b^{T} y \\
\text { subject to } & A x=b, & (D L P) & \text { subject to } A^{T} y+s=c, \\
& x \geq 0, & & s \geq 0
\end{array}
$$

where

$$
\begin{aligned}
A & =\left(\begin{array}{rrrrrr}
1 & 4 & 5 & -1 & 3 & 2 \\
-1 & 3 & 2 & 0 & 4 & 0 \\
-1 & 2 & 4 & 3 & 0 & 2
\end{array}\right), \quad b=\left(\begin{array}{c}
26 \\
15 \\
21
\end{array}\right), \\
c & =\left(\begin{array}{llllll}
1 & 1.9 & 3.85 & 2 & 0 & 3
\end{array}\right)^{T} .
\end{aligned}
$$

The related barrier transformed problem $\left(P_{\mu}\right)$, defined by

$$
\begin{aligned}
\text { minimize } & c^{T} x-\mu \sum_{j=1}^{6} \ln x_{j} \\
\left(P_{\mu}\right) \quad \text { subject to } & A x=b, \\
& (x>0),
\end{aligned}
$$

has an optimal solution $x(\mu)$ and lagrange multiplier vector $y(\mu)$ for $\mu=10^{-3}$ which numerically is given by approximately
$\mathrm{xmu}=$
0.000769682525151
2.961435517128881
3.018504931147981
1.000626320521990
0.019863317210637
0.000999981054749
$\mathrm{ymu}=$
0.250242738914173
-0. 200268068764611
0.749747788280888
(a) Use the above numbers to give an approximate solution $x(\mu), y(\mu)$ and $s(\mu)$ to the primal-dual nonlinear equations, associated with a primal-dual interior method for solving $(L P)$, for $\mu=10^{-3}$.
(b) The above problem $(L P)$ has an optimal solution which is integer valued, and there is an optimal solution to $(D L P)$ for which the components of y are integer multiples of $1 / 4$ or $1 / 5$. Given this knowledge, use your results from exercise 2 a to make a qualified guess of optimal solutions to $(L P)$ and $(D L P)$ respectively. Motivate your guess and verify optimality.
(c) If the simplex method had been used to solve $(L P)$, would the same primal optimal solution have been obtained? Comment on the result.
Hint: It holds that

$$
\operatorname{det}\left(\begin{array}{rrr}
4 & 5 & -1 \\
3 & 2 & 0 \\
2 & 4 & 3
\end{array}\right) \neq 0
$$

3. Consider the stochastic program (P) given by

$$
\begin{align*}
(P) \quad \text { subject to } & A x=b \tag{P}\\
& T(\omega) x=h(\omega) \\
& x \geq 0
\end{align*}
$$

$$
\operatorname{minimize} \quad c^{T} x
$$

where ω is a stochastic variable and $T(\omega) x=h(\omega)$ is to be interpreted as an "informal" stochastic constraint. Assume that ω takes on a finite number of values $\omega_{1}, \ldots, \omega_{N}$ with corresponding probabilities p_{1}, \ldots, p_{N}. Let T_{i} denote $T\left(\omega_{i}\right)$ and let h_{i} denote $h\left(\omega_{i}\right)$.
(a) Explain how the deterministically equivalent problem

$$
\begin{array}{ll}
\text { minimize } & c^{T} x+\sum_{i=1}^{N} p_{i} q_{i}^{T} y_{i} \\
\text { subject to } & A x=b, \\
& T_{i} x+W y_{i}=h_{i}, \quad i=1, \ldots, N \\
& x \geq 0, \\
& y_{i} \geq 0, \quad i=1, \ldots, N
\end{array}
$$

arises. (We assume, for simplicity, "fix compensation", i.e., W does not depend on i.)
(b) Define $V S S$ in terms of suitable optimization problems.
(c) Define $E V P I$ in terms of suitable optimization problems.
4. Consider the optimization problem

$$
\begin{aligned}
\operatorname{minimize} & \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j}-\sum_{j=1}^{n} f_{j} z_{j} \\
\text { subject to } & \sum_{j=1}^{n} x_{i j}=1, \quad i=1, \ldots, n \\
& \sum_{i=1}^{n} a_{i} x_{i j} \geq b_{j} z_{j}, \quad j=1, \ldots, n \\
& x_{i j} \in\{0,1\}, \quad z_{j} \in\{0,1\}, \quad i=1, \ldots, n, j=1, \ldots, n
\end{aligned}
$$

where $a_{i}, i=1, \ldots, n, b_{j}, j=1, \ldots, n, c_{i j}, i=1, \ldots, n, j=1, \ldots, n$, and f_{j}, $j=1, \ldots, n$, are integer nonnegative constants.
(a) Formulate the Lagrangian relaxed problem arising from relaxing the constraints

$$
\begin{equation*}
\sum_{j=1}^{n} x_{i j}=1, \quad i=1, \ldots, n \tag{4p}
\end{equation*}
$$

Simplify the formulation as much as you can.
(b) Formulate the Lagrangian relaxed problem arising from relaxing the constraints

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i} x_{i j} \geq b_{j} z_{j}, \quad j=1, \ldots, n \tag{4p}
\end{equation*}
$$

Simplify the formulation as much as you can.
(c) Discuss which of the two dual problems, associated with each of the two relaxations, that should give the best underestimate of the optimal value of the original problem.
5. Consider the linear program
$(L P)$

$$
\begin{array}{ll}
\operatorname{minimize} & 7 x_{1}+6 x_{2}+5 x_{3}+3 x_{4} \\
\text { subject to } & 3 x_{1}+2 x_{2}+4 x_{3}+5 x_{4}=6 \\
& -1 \leq x_{1}+x_{2} \leq 1 \\
& -1 \leq x_{1}-x_{2} \leq 1 \\
& -1 \leq x_{3}+x_{4} \leq 1 \\
& -1 \leq x_{3}-x_{4} \leq 1
\end{array}
$$

Solve ($L P$) by Dantzig-Wolfe decomposition. Consider $3 x_{1}+2 x_{2}+4 x_{3}+5 x_{4}=6$ the complicating constraint. Start with the initial basis corresponding to the extreme points $(1001)^{T}$ and $(-1001)^{T}$. The subproblems that arise may be solved in any way, that need not be systematic.
. (10p)
Hint 1: The following figure may be helpful:

Hint 2: The following relation for inversion of a two-by-two matrix may be useful for hand calculation:

$$
\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)^{-1}=\frac{1}{\alpha \delta-\beta \gamma}\left(\begin{array}{rr}
\delta & -\beta \\
-\gamma & \alpha
\end{array}\right) \quad \text { if } \quad \alpha \delta-\beta \gamma \neq 0
$$

GAMS file for exercise 1:

```
set rows / i1*i3 /;
set cols / j1*j5 /;
table A(rows,cols)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & j1 & j2 & j3 & j4 & j5 \\
\hline i1 & 3 & 4 & 1 & 0 & 0 \\
\hline i2 & -1 & 2 & 0 & 1 & 0 \\
\hline i3 & 2 & 1 & 0 & 0 & 1 \\
\hline
\end{tabular}
parameter c(cols)
        / j1 1
                j2 3
                j3 2 /;
parameter b(rows)
        / i1 4
                i2 3
                i3 4 /;
variables
    obj
    x(cols);
positive variables x;
equations
    cons(rows)
    objfun;
objfun .. sum(cols,c(cols)*x(cols)) - obj =e= 0;
cons(rows) .. sum(cols,A(rows,cols)*x(cols)) =e= b(rows);
model LPex / all /;
solve LPex using lp minimizing obj;
```

