
SF2812 Applied linear optimization, final exam
Friday January 15 2010 8.00–13.00

Examiner: Anders Forsgren, tel. 790 71 27.

Allowed tools: Pen/pencil, ruler and eraser.

Solution methods: Unless otherwise stated in the text, the problems should be solved
by systematic methods, which do not become unrealistic for large problems. If you use
methods other than what have been taught in the course, you must explain carefully.

Note! Personal number must be written on the title page. Write only one exercise per
sheet. Number the pages and write your name on each page.

22 points are sufficient for a passing grade. For 20-21 points, a completion to a passing
grade may be made within three weeks from the date when the results of the exam are
announced.

1. Consider the linear program (LP ) defined as

(LP )
min x1 + 2x2

d̊a x1 + 3x2 = 1,
x1 ≥ 0, x2 ≥ 0.

Consider a barrier transformation of (LP ) for a given positive barrier parameter µ.

(a) For the given µ, formulate the primal-dual system of nonlinear equations cor-
responding to the problem above. Use the fact that the problem is small to
calculate an explicit expression for the solution x(µ), y(µ) and s(µ) to these
nonlinear equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8p)

(b) Show that the calculated x(µ), y(µ) and s(µ) converge to an optimal solution
of (LP ) and corresponding dual problem as µ → 0. . . . . . . . . . . . . . . . . . . . . . (2p)

2. Consider a binary knapsack problem (KP ) defined as

(KP )

minimize −
n∑

j=1

cjxj

subject to −
n∑

j=1

ajxj ≥ −b,

xj ∈ {0, 1}, j = 1, . . . , n,

where a ≥ 0, c ≥ 0 and b ≥ 0.
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(a) Give an explicit expression for the objective function ϕ(λ) of the dual problem
(D) arising when the constraint −

∑n
j=1 ajxj ≥ −b is relaxed by Lagrangian

relaxation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)

(b) For a given λ ∈ IR, find an explicit expression for a subgradient to ϕ at λ. (2p)

(c) Assume that n = 3, a = (2 3 4)T , b = 6 and c = (4 5 6)T . Illustrate the
dual problem graphically. From the figure calculate the optimal solution and
the optimal objective value of the dual problem. Solve the small (KP ) by
inspection, and determine the duality gap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5p)

3. Consider the stochastic program (P ) given by

(P )

minimize cTx

subject to Ax = b,
T (ω)x = h(ω),
x ≥ 0,

where ω is a stochastic variable and T (ω)x = h(ω) is to be interpreted as an “in-
formal” stochastic constraint. Assume that ω takes on a finite number of values
ω1, . . . , ωN with corresponding probabilities p1, . . . , pN . Let Ti denote T (ωi) and let
hi denote h(ωi).

(a) Explain how the deterministically equivalent problem

minimize cTx +
N∑

i=1

piq
T
i yi

subject to Ax = b,
Tix + Wyi = hi, i = 1, . . . , N,
x ≥ 0,
yi ≥ 0, i = 1, . . . , N,

arises. (We assume, for simplicity, “fix compensation”, i.e., W does not depend
on i.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6p)

(b) Define VSS in terms of suitable optimization problems. . . . . . . . . . . . . . . . . . (2p)

(c) Define EVPI in terms of suitable optimization problems. . . . . . . . . . . . . . . . . (2p)

4. Consider a transportation problem (PTP ) defined as

(PTP )

minimize
4∑

i=1

3∑
j=1

cijxij

subject to
3∑

j=1

xij = ai, i = 1, 2, 3, 4,

4∑
i=1

xij = bj , j = 1, 2, 3,

xij ≥ 0, i = 1, 2, 3, 4, j = 1, 2, 3,
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with corresponding dual problem (DTP ) given by

(DTP )
maximize

4∑
i=1

aiui +
3∑

j=1

bjvj

subject to ui + vj + sij = cij , i = 1, 2, 3, 4, j = 1, 2, 3,
sij ≥ 0, i = 1, 2, 3, 4, j = 1, 2, 3,

where

C =


8 6 10
9 1 10
1 3 2
9 5 10

 , a =


1
2
3
2

 , b =


2
2
4

 .

AF has implemented a primal-dual interior method for linear programming. When
solving this transportation problem he obtains

X̂ =


1 0 0
0 2 0
1
2 0 5

2
1
2 0 3

2

 , û =


9
15
2

2
10

 , v̂ =


−1
−13

2

0

 , Ŝ =


0 7

2 1
5
2 0 5

2

0 15
2 0

0 3
2 0

 .

(a) Show that X̂ is an optimal solution to (PTP ). . . . . . . . . . . . . . . . . . . . . . . . . . . (3p)
(b) AF is a bit confused. He expected the optimal X to have integer values only,

as he is solving a transportation problem with a and b integer valued. Explain
why it is not surprising that AF’s interior solver has not produced an optimal
X with integer values only. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2p)

(c) Find, using X̂, two integer optimal solutions to (PTP ). . . . . . . . . . . . . . . . . . (3p)
Hint: The matrix P given by

P =


0 0 0
0 0 0
1 0 −1

−1 0 1


might be helpful.

(d) If (PTP ) was solved by the simplex method, which of the three optimal solu-
tions mentioned above might be obtained? Motivate your answer. . . . . . . . (2p)

5. Consider a cutting-stock problem with the following data:

W = 11, m = 3, w1 = 3, w2 = 5, w3 = 9, b =
(

60 50 40
)T

.

Notation and problem statement are in accordance to the textbook. Given are
rolls of width W . Rolls of m different widths are demanded. Roll i has width wi,
i = 1, . . . ,m. The demand for roll i is given by bi, i = 1, . . . ,m. The aim is to cut
the W -rolls so that a minimum number of W -rolls are used.
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(a) Solve the the LP-relaxed problem associated with the above problem. Start
with the basic feasible solution associated with the three “pure” cut patterns
(3 0 0)T , (0 2 0)T and (0 0 1)T . The subproblems that arise may be solved in
any way, that need not be systematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8p)

(b) Determine a “near-optimal” solution to the original problem. Give a bound on
the maximum deviation from the optimal value of the original problem. . . (2p)

Good luck!


